Acute morphine injection persistently affects the electrophysiological characteristics of rat locus coeruleus neurons

[1]  H. Azizi,et al.  Prenatal exposure to morphine enhances excitability in locus coeruleus neurons , 2022, Journal of Neural Transmission.

[2]  M. Janahmadi,et al.  Formalin-induced inflammatory pain increases excitability in locus coeruleus neurons , 2021, Brain Research Bulletin.

[3]  S. Foote,et al.  Locus coeruleus: a new look at the blue spot , 2020, Nature Reviews Neuroscience.

[4]  H. Azhdari-Zarmehri,et al.  Coregulation of sleep-pain physiological interplay by orexin system: An unprecedented review , 2020, Behavioural Brain Research.

[5]  H. Azizi,et al.  Adolescent Morphine Exposure in Male Rats Alters the Electrophysiological Properties of Locus Coeruleus Neurons of the Male Offspring , 2019, Neuroscience.

[6]  J. Mirnajafi-zadeh,et al.  Decrease of inhibitory synaptic currents of locus coeruleus neurons via orexin type 1 receptors in the context of naloxone-induced morphine withdrawal , 2018, The Journal of Physiological Sciences.

[7]  A. Mani,et al.  Orexin A presynaptically decreases inhibitory synaptic transmission in rat locus coeruleus neurons , 2018, Neuroscience Letters.

[8]  J. Micó,et al.  Behavioral effects of combined morphine and MK-801 administration to the locus coeruleus of a rat neuropathic pain model , 2018, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[9]  Eunji Cheong,et al.  Spike Frequency Adaptation in Neurons of the Central Nervous System , 2017, Experimental neurobiology.

[10]  J. Mirnajafi-zadeh,et al.  Enhancement of μ-opioid receptor desensitization by orexin-A in rat locus coeruleus neurons , 2017, Neuropeptides.

[11]  Y. Fathollahi,et al.  Peripheral nerve injury potentiates excitatory synaptic transmission in locus coeruleus neurons , 2017, Brain Research Bulletin.

[12]  H. Azizi,et al.  Intracoerulear microinjection of orexin-A induces morphine withdrawal-like signs in rats , 2017, Brain Research Bulletin.

[13]  J. Mirnajafi-zadeh,et al.  Orexin type 1 receptor antagonism in rat locus coeruleus prevents the analgesic effect of intra-LC met-enkephalin microinjection , 2015, Pharmacology Biochemistry and Behavior.

[14]  G. Henderson The μ‐opioid receptor: an electrophysiologist's perspective from the sharp end , 2015, British journal of pharmacology.

[15]  D. Bechtold,et al.  Acute Suppressive and Long-Term Phase Modulation Actions of Orexin on the Mammalian Circadian Clock , 2014, The Journal of Neuroscience.

[16]  Stephen B. McMahon,et al.  Opening paths to novel analgesics: the role of potassium channels in chronic pain , 2014, Trends in Neurosciences.

[17]  Anoumid Vaziri,et al.  Involvement of orexin-2 receptors in the ventral tegmental area and nucleus accumbens in the antinociception induced by the lateral hypothalamus stimulation in rats , 2013, Peptides.

[18]  E. Nestler,et al.  Opiate-induced molecular and cellular plasticity of ventral tegmental area and locus coeruleus catecholamine neurons. , 2012, Cold Spring Harbor perspectives in medicine.

[19]  Clifford B Saper,et al.  Spinal projections of the A5, A6 (locus coeruleus), and A7 noradrenergic cell groups in rats , 2012, The Journal of comparative neurology.

[20]  J. Mirnajafi-zadeh,et al.  Antagonism of orexin type 1 receptors in the locus coeruleus attenuates signs of naloxone-precipitated morphine withdrawal in rats , 2010, Neuroscience Letters.

[21]  R. Callister,et al.  Pacemaker currents in mouse locus coeruleus neurons , 2010, Neuroscience.

[22]  John T. Williams,et al.  Pre‐ and postsynaptic regulation of locus coeruleus neurons after chronic morphine treatment: a study of GIRK‐knockout mice , 2008, The European journal of neuroscience.

[23]  A. N. van den Pol,et al.  μ-Opioid Receptor-Mediated Depression of the Hypothalamic Hypocretin/Orexin Arousal System , 2008, The Journal of Neuroscience.

[24]  Xuechu Zhen,et al.  Single dose of morphine produced a prolonged effect on dopamine neuron activities , 2008, Molecular pain.

[25]  G. Pasternak,et al.  Modulation of Brainstem Opiate Analgesia in the Rat by σ1 Receptors: A Microinjection Study , 2007, Journal of Pharmacology and Experimental Therapeutics.

[26]  B. Bean The action potential in mammalian central neurons , 2007, Nature Reviews Neuroscience.

[27]  D. Benhamou,et al.  A Single Dose of Intrathecal Morphine in Rats Induces Long-Lasting Hyperalgesia: The Protective Effect of Prior Administration of Ketamine , 2005, Anesthesia and analgesia.

[28]  S. Holtzman,et al.  Naltrexone-induced conditioned place aversion following a single dose of morphine in the rat , 2005, Pharmacology Biochemistry and Behavior.

[29]  Y. Kitamura,et al.  Nicotine attenuates place aversion induced by naloxone in single-dose, morphine-treated rats , 2004, Psychopharmacology.

[30]  C. Shieh,et al.  Modulation of action potential firing by iberiotoxin and NS1619 in rat dorsal root ganglion neurons , 2003, Neuroscience.

[31]  G. Aghajanian,et al.  Regulation of RGS proteins by chronic morphine in rat locus coeruleus , 2003, The European journal of neuroscience.

[32]  R. Malenka,et al.  Drugs of Abuse and Stress Trigger a Common Synaptic Adaptation in Dopamine Neurons , 2003, Neuron.

[33]  M. Stoffel,et al.  G-Protein-Gated Potassium Channels Containing Kir3.2 and Kir3.3 Subunits Mediate the Acute Inhibitory Effects of Opioids on Locus Ceruleus Neurons , 2002, The Journal of Neuroscience.

[34]  M. Millan Descending control of pain , 2002, Progress in Neurobiology.

[35]  G. Aston-Jones,et al.  Local opiate withdrawal in locus coeruleus neurons in vitro. , 2001, Journal of neurophysiology.

[36]  J F Storm,et al.  The role of BK‐type Ca2+‐dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells , 1999, The Journal of physiology.

[37]  M. I. Smith,et al.  Orexin A activates locus coeruleus cell firing and increases arousal in the rat. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[38]  B Sakmann,et al.  Effect of changes in action potential shape on calcium currents and transmitter release in a calyx-type synapse of the rat auditory brainstem. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[39]  Y. Kurachi,et al.  G protein regulation of potassium ion channels. , 1998, Pharmacological reviews.

[40]  F E Bloom,et al.  The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[41]  G. Aghajanian,et al.  Use of the whole-cell patch-clamp method in studies on the role of cAMP in regulating the spontaneous firing of locus coeruleus neurons , 1995, Journal of Neuroscience Methods.

[42]  S. A. Shefner,et al.  Calcium‐activated hyperpolarizations in rat locus coeruleus neurons in vitro. , 1993, The Journal of physiology.

[43]  G. Augustine,et al.  Regulation of transmitter release at the squid giant synapse by presynaptic delayed rectifier potassium current. , 1990, The Journal of physiology.

[44]  G. Aston-Jones,et al.  GABA-mediated inhibition of locus coeruleus from the dorsomedial rostral medulla , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  M Inoue,et al.  Somatostatin induces an inward rectification in rat locus coeruleus neurones through a pertussis toxin‐sensitive mechanism. , 1988, The Journal of physiology.

[46]  M. Pozza,et al.  GABAA and GABAB receptors in locus coeruleus: effects of blockers. , 1988, European Journal of Pharmacology.

[47]  R. Nicoll,et al.  Properties of two calcium‐activated hyperpolarizations in rat hippocampal neurones. , 1987, The Journal of physiology.

[48]  J. Storm,et al.  Action potential repolarization and a fast after‐hyperpolarization in rat hippocampal pyramidal cells. , 1987, The Journal of physiology.

[49]  A. Takemori,et al.  Increased sensitivity to dopamine agonists following a single dose of morphine or levorphanol in mice. , 1985, European journal of pharmacology.

[50]  J. T. Williams,et al.  Membrane properties of rat locus coeruleus neurones , 1984, Neuroscience.

[51]  G. Aghajanian,et al.  Intracellular studies on the role of calcium in regulating the activity and reactivity of locus coeruleus neurons in vivo , 1983, Brain Research.

[52]  John Williams,et al.  Enkephalin opens potassium channels on mammalian central neurones , 1982, Nature.

[53]  D. Hammond,et al.  Effects of locus coeruleus lesions on morphine-induced antinociception , 1980, Brain Research.

[54]  B. Bunney,et al.  Noradrenergic neurons: morphine inhibition of spontaneous activity. , 1974, European journal of pharmacology.