HYSTERESIS AND VIBRATION COMPENSATION IN PIEZOELECTRIC ACTUATORS BY INTEGRATING CHARGE CONTROL AND INVERSE FEEDFORWARD1

Abstract In this paper we address the problems of hysteresis and vibrations that limit the accuracy of piezoelectric positioners. It is widely known that the use of charge control significantly reduces hysteresis, thus enabling high-accuracy positioning during low speed operations. However, charge control is unable to reduce vibrations that limit the positioning bandwidth. Our main contribution is to overcome this bandwidth limitation by augmenting charge control with inverse feedforward to compensate for vibrations, resulting in a high-bandwidth, high-accuracy positioning system. We apply this integrated method to a piezoelectric tube actuator and experimental results are presented to illustrate the positioning improvements with the proposed integrated approach.

[1]  Santosh Devasia,et al.  Output Tracking for Actuator Deficient/Redundant Systems: Multiple Piezoactuator Example , 2000 .

[2]  Kam K. Leang,et al.  Experimental and Theoretical Results in Output-Trajectory Redesign for Flexible Structures , 1998 .

[3]  K. Kuhnen,et al.  Inverse feedforward controller for complex hysteretic nonlinearities in smart-material systems , 2001 .

[4]  P. A. McKeown,et al.  A Fast Response Piezoelectric Actuator for Servo Correction of Systematic Errors in Precision Machining , 1984 .

[5]  H. Kaizuka,et al.  A Simple Way to Reduce Hysteresis and Creep When Using Piezoelectric Actuators , 1988 .

[6]  Anthony G. Evans,et al.  Nonlinear Deformation of Ferroelectric Ceramics , 1993 .

[7]  D. Croft,et al.  Vibration compensation for high speed scanning tunneling microscopy , 1999 .

[8]  R. Barrett,et al.  Optical scan‐correction system applied to atomic force microscopy , 1991 .

[9]  Ping Ge,et al.  Tracking control of a piezoceramic actuator , 1996, IEEE Trans. Control. Syst. Technol..

[10]  Yuichi Okazaki,et al.  A micro-positioning tool post using a piezoelectric actuator for diamond turning machines , 1990 .

[11]  C. Newcomb,et al.  Improving the linearity of piezoelectric ceramic actuators , 1982 .

[12]  G. Binnig,et al.  Single-tube three-dimensional scanner for scanning tunneling microscopy , 1986 .

[13]  H. Hiura,et al.  Tailoring graphite layers by scanning tunneling microscopy , 2004 .

[14]  S. O. Reza Moheimani,et al.  Sensor-less Vibration Suppression and Scan Compensation for Piezoelectric Tube Nanopositioners , 2005, CDC 2005.

[15]  Robert J. Veillette,et al.  A charge controller for linear operation of a piezoelectric stack actuator , 2005, IEEE Transactions on Control Systems Technology.

[16]  Eduardo Bayo,et al.  A finite-element approach to control the end-point motion of a single-link flexible robot , 1987, J. Field Robotics.

[17]  Santosh Devasia,et al.  Hysteresis and Vibration Compensation for Piezoactuators , 1998 .

[18]  Calvin F. Quate,et al.  Scanning probes as a lithography tool for nanostructures , 1997 .

[19]  A. Stemmer,et al.  Model-based signal conditioning for high-speed atomic force and friction force microscopy , 2003 .