Connection patterns distinguish 3 regions of human parietal cortex.

Three regions of the macaque inferior parietal lobule and adjacent lateral intraparietal sulcus (IPS) are distinguished by the relative strengths of their connections with the superior colliculus, parahippocampal gyrus, and ventral premotor cortex. It was hypothesized that connectivity information could therefore be used to identify similar areas in the human parietal cortex using diffusion-weighted imaging and probabilistic tractography. Unusually, the subcortical routes of the 3 projections have been reported in the macaque, so it was possible to compare not only the terminations of connections but also their course. The medial IPS had the highest probability of connection with the superior colliculus. The projection pathway resembled that connecting parietal cortex and superior colliculus in the macaque. The posterior angular gyrus and the adjacent superior occipital gyrus had a high probability of connection with the parahippocampal gyrus. The projection pathway resembled the macaque inferior longitudinal fascicle, which connects these areas. The ventral premotor cortex had a high probability of connection with the supramarginal gyrus and anterior IPS. The connection was mediated by the third branch of the superior longitudinal fascicle, which interconnects similar regions in the macaque. Human parietal areas have anatomical connections resembling those of functionally related macaque parietal areas.

[1]  A. Cowey,et al.  On the role of posterior parietal and prefrontal cortex in visuo-spatial perception and attention , 2004, Experimental Brain Research.

[2]  G. Rizzolatti,et al.  Afferent and efferent projections of the inferior area 6 in the macaque monkey , 1986, The Journal of comparative neurology.

[3]  S. Glover,et al.  Separate visual representations in the planning and control of action , 2004, Behavioral and Brain Sciences.

[4]  K. Zilles,et al.  Functional neuroanatomy of the primate isocortical motor system , 2000, Anatomy and Embryology.

[5]  P. C. Murphy,et al.  Cerebral Cortex , 2017, Cerebral Cortex.

[6]  Christopher Kennard,et al.  Differential cortical activation during voluntary and reflexive saccades in man , 2003, NeuroImage.

[7]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[8]  Subcortical projections of the parietal lobes. , 2003, Advances in neurology.

[9]  L. Benevento,et al.  The ascending projections of the superior colliculus in the rhesus monkey (Macaca mulatta) , 1975, The Journal of comparative neurology.

[10]  K. Zilles,et al.  Crossmodal Processing of Object Features in Human Anterior Intraparietal Cortex An fMRI Study Implies Equivalencies between Humans and Monkeys , 2002, Neuron.

[11]  Alan Connelly,et al.  Diffusion-weighted magnetic resonance imaging fibre tracking using a front evolution algorithm , 2003, NeuroImage.

[12]  D. Amaral,et al.  Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents , 1994, The Journal of comparative neurology.

[13]  M. Sereno,et al.  From monkeys to humans: what do we now know about brain homologies? , 2005, Current Opinion in Neurobiology.

[14]  D. Pandya,et al.  Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey , 1982, The Journal of comparative neurology.

[15]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections , 1989, The Journal of comparative neurology.

[16]  C. Colby,et al.  Heterogeneity of extrastriate visual areas and multiple parietal areas in the Macaque monkey , 1991, Neuropsychologia.

[17]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[18]  Jean-Philippe Thiran,et al.  DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection , 2003, NeuroImage.

[19]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[20]  D. B. Bender,et al.  Saccadic eye movements following kainic acid lesions of the pulvinar in monkeys , 2004, Experimental Brain Research.

[21]  Helen L Jamison,et al.  Morphology and the internal structure of words. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  M. Rushworth,et al.  Attention Systems and the Organization of the Human Parietal Cortex , 2001, The Journal of Neuroscience.

[23]  R. M. Siegel,et al.  Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule , 1990, The Journal of comparative neurology.

[24]  Dottie M. Clower,et al.  The Inferior Parietal Lobule Is the Target of Output from the Superior Colliculus, Hippocampus, and Cerebellum , 2001, The Journal of Neuroscience.

[25]  D. B. Bender,et al.  Distribution of corticotectal cells in macaque , 2003, Experimental Brain Research.

[26]  Y. Miyashita,et al.  Functional Magnetic Resonance Imaging of Macaque Monkeys Performing Visually Guided Saccade Tasks Comparison of Cortical Eye Fields with Humans , 2004, Neuron.

[27]  R. E. Passingham,et al.  Parietal cortex and movement I. Movement selection and reaching , 1997, Experimental Brain Research.

[28]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.

[29]  A. Simeone,et al.  The TINS Lecture Understanding the roles of Otx1 and Otx2 in the control of brain morphogenesis , 1999, Trends in Neurosciences.

[30]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[31]  M. A. Steinmetz,et al.  Neuronal responses in area 7a to multiple stimulus displays: II. responses are suppressed at the cued location. , 2001, Cerebral cortex.

[32]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[33]  J. Lynch,et al.  The parieto‐collicular pathway: anatomical location and contribution to saccade generation , 2003, The European journal of neuroscience.

[34]  Nicola Palomero-Gallagher,et al.  Subdivisions of human parietal area 5 revealed by quantitative receptor autoradiography: a parietal region between motor, somatosensory, and cingulate cortical areas , 2005, NeuroImage.

[35]  H. Sakata,et al.  Neural representation of three-dimensional features of manipulation objects with stereopsis , 1999, Experimental Brain Research.

[36]  K. Nakahara Functional magnetic resonance imaging of macaque monkeys. , 2004, Methods in enzymology.

[37]  M. Corbetta,et al.  An Event-Related Functional Magnetic Resonance Imaging Study of Voluntary and Stimulus-Driven Orienting of Attention , 2005, The Journal of Neuroscience.

[38]  A. Galaburda,et al.  Inferior parietal lobule. Divergent architectonic asymmetries in the human brain. , 1984, Archives of neurology.

[39]  D. Pandya,et al.  Some observations on the course and composition of the cingulum bundle in the rhesus monkey , 1984, The Journal of comparative neurology.

[40]  M. Sereno,et al.  Mapping of Contralateral Space in Retinotopic Coordinates by a Parietal Cortical Area in Humans , 2001, Science.

[41]  Scott T. Grafton,et al.  A distributed left hemisphere network active during planning of everyday tool use skills. , 2004, Cerebral cortex.

[42]  Richard S. J. Frackowiak,et al.  Functional localization of the system for visuospatial attention using positron emission tomography. , 1997, Brain : a journal of neurology.

[43]  D. Amaral,et al.  Perirhinal and parahippocampal cortices of the macaque monkey: Projections to the neocortex , 2002, The Journal of comparative neurology.

[44]  M. A. Steinmetz,et al.  Neurophysiological evidence for a role of posterior parietal cortex in redirecting visual attention. , 1995, Cerebral cortex.

[45]  W. Fries Cortical projections to the superior colliculus in the macaque monkey: A retrograde study using horseradish peroxidase , 1984, The Journal of comparative neurology.

[46]  Joel R. Meyer,et al.  A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. , 1999, Brain : a journal of neurology.

[47]  R. E. Passingham,et al.  Parietal cortex and movement II. Spatial representation , 1997, Experimental Brain Research.

[48]  C. Kennard,et al.  The anatomy of visual neglect. , 2003, Brain : a journal of neurology.

[49]  R. J. Seitz,et al.  A fronto‐parietal circuit for object manipulation in man: evidence from an fMRI‐study , 1999, The European journal of neuroscience.

[50]  T. Paus,et al.  Cortical regions involved in eye movements, shifts of attention, and gaze perception , 2005, Human brain mapping.

[51]  A. Kleinschmidt,et al.  Dissociating neural correlates of cognitive components in mental calculation. , 2001, Cerebral cortex.

[52]  Gereon R Fink,et al.  Cerebral correlates of alerting, orienting and reorienting of visuospatial attention: an event-related fMRI study , 2004, NeuroImage.

[53]  M. Wallace,et al.  Converging influences from visual, auditory, and somatosensory cortices onto output neurons of the superior colliculus. , 1993, Journal of neurophysiology.

[54]  H Johansen-Berg,et al.  Parietal cortex and spatial-postural transformation during arm movements. , 1998, Journal of neurophysiology.

[55]  D. Pandya,et al.  Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. , 2005, Cerebral cortex.

[56]  Timothy Edward John Behrens,et al.  Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Derek K. Jones,et al.  Diffusion‐tensor MRI: theory, experimental design and data analysis – a technical review , 2002 .

[58]  S C Williams,et al.  Non‐invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI , 1999, Magnetic resonance in medicine.

[59]  W. Bank The Human Brain. Surface, Three-Dimensional Sectional Anatomy and MRI , 1993 .

[60]  C Dohle,et al.  Human anterior intraparietal area subserves prehension , 1998, Neurology.

[61]  H. Sakata,et al.  The TINS Lecture The parietal association cortex in depth perception and visual control of hand action , 1997, Trends in Neurosciences.

[62]  R. Andersen,et al.  Intentional maps in posterior parietal cortex. , 2002, Annual review of neuroscience.

[63]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[64]  Alan C. Evans,et al.  Volumetry of temporopolar, perirhinal, entorhinal and parahippocampal cortex from high-resolution MR images: considering the variability of the collateral sulcus. , 2002, Cerebral cortex.

[65]  A. Paans,et al.  Brain Activation Related to the Representations of External Space and Body Scheme in Visuomotor Control , 2001, NeuroImage.

[66]  Daniel C. Alexander,et al.  Probabilistic Monte Carlo Based Mapping of Cerebral Connections Utilising Whole-Brain Crossing Fibre Information , 2003, IPMI.

[67]  Richard A. Andersen,et al.  FMRI evidence for a 'parietal reach region' in the human brain , 2003, Experimental Brain Research.

[68]  D. Pandya,et al.  Posterior parietal projections to the intraparietal sulcus of the rhesus monkey , 2004, Experimental Brain Research.

[69]  G. Pearlson,et al.  Diffusion Tensor Imaging and Axonal Tracking in the Human Brainstem , 2001, NeuroImage.

[70]  R. J. Seitz,et al.  A parieto-premotor network for object manipulation: evidence from neuroimaging , 1999, Experimental Brain Research.

[71]  D. Pandya,et al.  Association pathways of the prefrontal cortex and functional observations , 2002 .

[72]  H. Moser,et al.  Imaging cortical association tracts in the human brain using diffusion‐tensor‐based axonal tracking , 2002, Magnetic resonance in medicine.

[73]  D. Stuss,et al.  Principles of frontal lobe function , 2002 .

[74]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[75]  Timothy Edward John Behrens,et al.  Quantitative Investigation of Connections of the Prefrontal Cortex in the Human and Macaque using Probabilistic Diffusion Tractography , 2005, The Journal of Neuroscience.

[76]  E. Cabanis,et al.  The Human Brain: Surface, Three-Dimensional Sectional Anatomy and Mri , 1991 .

[77]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[78]  S. Lehéricy,et al.  3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to the human striatum. , 2004, Cerebral cortex.

[79]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[80]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[81]  J. Lynch,et al.  Deficits of visual attention and saccadic eye movements after lesions of parietooccipital cortex in monkeys. , 1989, Journal of neurophysiology.

[82]  M. Corbetta,et al.  Functional Organization of Human Intraparietal and Frontal Cortex for Attending, Looking, and Pointing , 2003, The Journal of Neuroscience.

[83]  Timothy Edward John Behrens,et al.  Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. , 2005, Cerebral cortex.

[84]  D. B. Bender,et al.  Anterograde degeneration in the superior colliculus following kainic acid and radiofrequency lesions of the macaque pulvinar , 1984, The Journal of comparative neurology.

[85]  G. Fink,et al.  REVIEW: The functional organization of the intraparietal sulcus in humans and monkeys , 2005, Journal of anatomy.

[86]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[87]  Volkmar Glauche,et al.  Functional properties and interaction of the anterior and posterior intraparietal areas in humans , 2003, The European journal of neuroscience.

[88]  K. Zilles,et al.  Nicotine Modulates Reorienting of Visuospatial Attention and Neural Activity in Human Parietal Cortex , 2005, Neuropsychopharmacology.

[89]  David C Lyon,et al.  Distribution across cortical areas of neurons projecting to the superior colliculus in new world monkeys. , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[90]  H. R. Clemo,et al.  Organization of a fourth somatosensory area of cortex in cat. , 1983, Journal of neurophysiology.

[91]  R. Passingham,et al.  The Attentional Role of the Left Parietal Cortex: The Distinct Lateralization and Localization of Motor Attention in the Human Brain , 2001, Journal of Cognitive Neuroscience.

[92]  V. Wedeen,et al.  Diffusion MRI of Complex Neural Architecture , 2003, Neuron.

[93]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[94]  D. N. Pandya,et al.  Further observations on parieto-temporal connections in the rhesus monkey , 2004, Experimental Brain Research.

[95]  G. Bonin,et al.  The neocortex of Macaca mulatta , 1947 .

[96]  J. Lynch,et al.  The spatial distribution of pulvinar neurons that project to two subregions of the inferior parietal lobule in the macaque. , 1992, Cerebral cortex.

[97]  A M Graybiel,et al.  The differential projection of two cytoarchitectonic subregions of the inferior parietal lobule of macaque upon the deep layers of the superior colliculus , 1985, The Journal of comparative neurology.

[98]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.