A first-order interior-point method for linearly constrained smooth optimization

We propose a first-order interior-point method for linearly constrained smooth optimization that unifies and extends first-order affine-scaling method and replicator dynamics method for standard quadratic programming. Global convergence and, in the case of quadratic program, (sub)linear convergence rate and iterate convergence results are derived. Numerical experience on simplex constrained problems with 1000 variables is reported.

[1]  Immanuel M. Bomze,et al.  Regularity versus Degeneracy in Dynamics, Games, and Optimization: A Unified Approach to Different Aspects , 2002, SIAM Rev..

[2]  Takashi Tsuchiya Global convergence of the affine scaling algorithm for primal degenerate strictly convex quadratic programming problems , 1993, Ann. Oper. Res..

[3]  Romesh Saigal,et al.  The primal power affine scaling method , 1996, Ann. Oper. Res..

[4]  Yinyu Ye,et al.  On affine scaling algorithms for nonconvex quadratic programming , 1992, Math. Program..

[5]  I. Bomze,et al.  Multi-Standard Quadratic Optimization Problems , 2007 .

[6]  Marcello Pelillo,et al.  Replicator Equations, Maximal Cliques, and Graph Isomorphism , 1998, Neural Computation.

[7]  A. Hoffman On approximate solutions of systems of linear inequalities , 1952 .

[8]  D M Smith Letter to the Editor. , 1965, Science.

[9]  J. Frédéric Bonnans,et al.  A Trust Region Interior Point Algorithm for Linearly Constrained Optimization , 1997, SIAM J. Optim..

[10]  Anders Forsgren,et al.  Interior Methods for Nonlinear Optimization , 2002, SIAM Rev..

[11]  Yanhui Wang,et al.  Trust region affine scaling algorithms for linearly constrained convex and concave programs , 1998, Math. Program..

[12]  Paul Tseng,et al.  On the convergence of the affine-scaling algorithm , 1992, Math. Program..

[13]  P. Moran,et al.  The statistical processes of evolutionary theory. , 1963 .

[14]  Kaleem Siddiqi,et al.  Matching Hierarchical Structures Using Association Graphs , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Takashi Tsuchiya,et al.  Global convergence of the affine scaling methods for degenerate linear programming problems , 1991, Math. Program..

[16]  Takashi Tsuchiya,et al.  Global Convergence of the Affine Scaling Algorithm for Convex Quadratic Programming , 1998, SIAM J. Optim..

[17]  Takashi Tsuchiya,et al.  A simplified global convergence proof of the affine scaling algorithm , 1993, Ann. Oper. Res..

[18]  Immanuel M. Bomze,et al.  Multi-Standard Quadratic Optimization: interior point methods and cone programming reformulation , 2010, Comput. Optim. Appl..

[19]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[20]  Masakazu Muramatsu,et al.  Global Convergence of a Long-Step Affine Scaling Algorithm for Degenerate Linear Programming Problems , 1995, SIAM J. Optim..

[21]  Jie Sun,et al.  A convergence proof for an affine-scaling algorithm for convex quadratic programming without nondegeneracy assumptions , 1993, Math. Program..

[22]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[23]  Saralees Nadarajah,et al.  Letter to the editor , 2007, Int. Trans. Oper. Res..

[24]  Immanuel M. Bomze,et al.  On Standard Quadratic Optimization Problems , 1998, J. Glob. Optim..

[25]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[26]  I. Bomze Portfolio selection via replicator dynamics and projections of indefinite estimated covariances , 2000 .

[27]  Philip E. Gill,et al.  Practical optimization , 1981 .

[28]  Jie Sun A convergence analysis for a convex version of Dikin's algorithm , 1996, Ann. Oper. Res..

[29]  Paul Tseng Convergence Properties of Dikin’s Affine Scaling Algorithm for Nonconvex Quadratic Minimization , 2004, J. Glob. Optim..

[30]  A. W. F. Edwards,et al.  The statistical processes of evolutionary theory , 1963 .

[31]  Marcello Pelillo,et al.  Matching Free Trees, Maximal Cliques, and Monotone Game Dynamics , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  O. Mangasarian A simple characterization of solution sets of convex programs , 1988 .