TEMPERATURE-INDUCED P21/c TO C2/c PHASE TRANSITION IN PARTIALLY AMORPHOUS (METAMICT) TITANITE REVEALED BY RAMAN SPECTROSCOPY

In situ temperature-dependent Raman spectroscopic measurements of two partially amorphous (metamict) titanite samples with accumulated radiation doses ~1.2 × 10 18 α-events/g (E2335) and ~2.2 ×10 18 α-events/g (M28696) and amorphous fractions of 0.24 and 0.5, respectively, provide evidence for a thermally induced transformation analogous to the phase transition P 2 1 / c ↔ C 2/ c , which is characteristic of endmember titanite (CaTiSiO 5 ). Quantitative analysis of the temperature evolution of the wavenumbers and widths of Raman-active vibrations in both partially amorphous titanites reveals an anomaly near 500 K which is consistent with the P 2 1 / c ↔ C 2/ c phase-transition temperature of titanite close to its endmember composition. The observed spectral changes are not due to structural recovery of the radiation-damaged structure because synchrotron X-ray diffraction experiments of M28696 titanite show that relevant recrystallization occurs at annealing temperatures above 600 K. The structural transformation near 500 K is observed by Raman spectroscopy even in heavily radiation-damaged and chemically inhomogeneous titanite (M28696). The microstructure of the samples consists of coexisting crystalline and amorphous domains, with the P 2 1 / c to C 2/ c phase-transition occurring in the latter.

[1]  I. Swainson,et al.  Room temperature single-crystal diffuse scattering and ab initio lattice dynamics in CaTiSiO5 , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  E. Salje,et al.  Intermediate structures in radiation damaged titanite (CaTiSiO5): a Raman spectroscopic study , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  U. Kolb,et al.  Structural anisotropy and annealing-induced nanoscale atomic rearrangements in metamict titanite , 2012 .

[4]  E. Salje,et al.  Evidence for direct impact damage in metamict titanite CaTiSiO5 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  E. Salje,et al.  Elastic softening of metamict titanite CaTiSiO5: Radiation damage and annealing , 2011 .

[6]  E. Salje,et al.  Determination of iron sites and the amount of amorphization in radiation-damaged titanite (CaSiTiO5) , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  A. SpasskyD,et al.  ZnMoO 4 結晶での電子構造およびルミネセンス機構 , 2011 .

[8]  B. Mihailova,et al.  Structural phenomena of metamict titanite: a synchrotron, X-ray diffraction and vibrational spectroscopic study , 2010 .

[9]  C. Paulmann,et al.  Local Phenomena in meta-mict Titanite , 2010 .

[10]  T. Malcherek A structural phase transition in NaTaOGeO(4) and its relation to phase transitions in titanite. , 2007, Acta Crystallographica Section B Structural Science.

[11]  R. Wrzalik,et al.  Micro-Raman spectroscopy studies of some accessory minerals from pegmatites of the Sowie Mts and Strzegom-Sobótka massif, Lower Silesia, Poland , 2005 .

[12]  E. Salje,et al.  Metamictization and recrystallization of titanite: An infrared spectroscopic study , 2002 .

[13]  C. Paulmann,et al.  Diffuse scattering anisotropy and the P21/a ↔ A2/a phase transition in titanite, CaTiOSiO4 , 2001 .

[14]  P. Harden,et al.  Resonance Raman study of the high-pressure phase transition in chromium-doped titanite, CaTiOSiO4 , 2000 .

[15]  E. Salje,et al.  DEHYDRATION OF METAMICT TITANITE: AN INFRARED SPECTROSCOPIC STUDY , 2000 .

[16]  C. Paulmann,et al.  Thermal annealing of metamict titanite: A synchrotron radiation and optical birefringence study , 2000 .

[17]  E. Salje,et al.  A high temperature diffraction study of synthetic titanite catiosio4 , 1999 .

[18]  E. Salje,et al.  The β-γ phase transition in titanite and the isosymmetric analogue in malayaite , 1999 .

[19]  G. Tendeloo,et al.  Natural titanite and malayaite: Structural investigations and the 500 K anomaly , 1998 .

[20]  Ulrich Bismayer,et al.  Anti-phase boundaries and phase transitions in titanite: An X-ray diffraction study , 1997 .

[21]  John M. Hughes,et al.  Incorporation of rare earth elements in titanite: Stabilization of the A2/a dimorph by creation of antiphase boundaries , 1997 .

[22]  E. Salje,et al.  Structural phase transition near 825 K in titanite: Evidence from infrared spectroscopic observations , 1997 .

[23]  U. Bismayer,et al.  The two-step phase transition of titanite, CaTiSiO5 : a synchrotron radiation study , 1997 .

[24]  E. Salje,et al.  Phase transformation of natural titanite : An infrared, Raman spectroscopic, optical birefringence and X-ray diffraction study , 1996 .

[25]  E. Salje,et al.  Phase transition(s) in titanite CaTiSiO5: An infrared spectroscopic, dielectric response and heat capacity study , 1995 .

[26]  E. Salje,et al.  Structural phase transition in titanite, CaTiSiO5: A ramanspectroscopic study , 1993 .

[27]  U. Bismayer,et al.  Linear birefringence and X-Ray diffraction studies of the structural phase transition in titanite, CaTiSiO5 , 1992 .

[28]  G. Rossman,et al.  Alpha-decay damage in titanite , 1991 .

[29]  R. Ewing,et al.  Alpha-recoil damage in titanite (CaTiSiO_5): Direct observation and annealing study using high resolution transmission electron microscopy , 1991 .

[30]  G. Tendeloo,et al.  Paraelectric-antiferroelectric phase transition in titanite, CaTiSiO5 , 1991 .

[31]  Yoshiaki Ito,et al.  Paraelectric-antiferroelectric phase transition in titanite, CaTiSiO5 , 1991 .

[32]  H. Kuzmany Festkörperspektroskopie : eine Einführung , 1989 .

[33]  E. Vance,et al.  Radiation damage in natural titanites , 1985 .

[34]  J. B. Higgins,et al.  The crystal chemistry and space groups of natural and synthetic titanites , 1976 .

[35]  G. Brown,et al.  High-temperature structural study of the P2 1 /a A2/a phase transition in synthetic titanite, CaTiSiO 5 , 1976 .

[36]  G. V. Gibbs,et al.  The crystal structure of synthetic titanite, CaTiOSiO 4 , and the domain textures of natural titanites , 1976 .