Growth dependent optical properties of ZnMgO at THz frequencies

A relatively high Mg mole fraction of 7% is achieved using the cavitation effect under sonication to overcome the low solubility of ZnO-MgO at low temperature. The Mg mole fraction is confirmed by shift in the near band emission of free exciton under photoluminescence spectroscopy at room temperature. The x-ray diffraction pattern has a large peak associated to ZnO (002) from which the c-lattice constant is calculated to be 5.1967Ǻ. The nanorods (NRs) grown via sonochemical are compared to nanowires (NWs) grown using metal organic chemical vapor deposition (MOCVD) and hydrothermal synthesis. Also, the effect of the ZnO film used as seed layer is described and compare to a simple spin coated layer. Terahertz (THz) index of refraction and dielectric constant of wurtzite Zn1-xMgxO NWs with Mg mole fraction of 7% via sonochemical are determined using THz time domain spectroscopy (THz-TDS). The results are compared with ZnO and ZnMgO NWs with 10% Mg mole fraction grown using MOCVD. The successful growth of Zn1-xMgxO with wurtzite structure at low temperature permits realization of the growth of heterostructures, quantum well, nanowires and nanorods on flexible substrates providing lower cost, optical and carrier confinement necessary in advanced light emitting diodes (LEDs), laser diodes (LDs) and high efficiency solar cells.

[1]  Seung Hwan Ko,et al.  Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. , 2011, Nano letters.

[2]  Wi Hyoung Lee,et al.  High-mobility low-temperature ZnO transistors with low-voltage operation , 2010 .

[3]  J. Salem,et al.  Synthesis and characterization of Mg-doped ZnO hollow spheres , 2011 .

[4]  Erik M. J. Johansson,et al.  Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. , 2013, Nanoscale.

[5]  Wei Chen,et al.  Terahertz dielectric properties of MgO nanocrystals , 2008 .

[6]  Anran Li,et al.  Terahertz dielectric response of silica-encapsulated FePt core–shell colloid film , 2015 .

[7]  Xiao Wei Sun,et al.  Terahertz dielectric response and optical conductivity of n-type single-crystal ZnO epilayers grown by metalorganic chemical vapor deposition , 2010 .

[8]  Pengcheng Yan,et al.  Wet cation exchange route to semiconductor alloys: the case study of MgxZn1-xO , 2013 .

[9]  Joondong Kim,et al.  ZnO nanowire-embedded Schottky diode for effective UV detection by the barrier reduction effect , 2010, Nanotechnology.

[10]  Anders Hagfeldt,et al.  E ffi cient and stable CH 3 NH 3 PbI 3-sensitized ZnO nanorod array solid-state solar cells , .

[11]  Abdiel Rivera,et al.  Optimization of Annealing Conditions for ZnO-based Thin Films Grown Using MOCVD , 2014 .

[12]  Kun-Hong Lee,et al.  A Sonochemical Method for Fabricating Aligned ZnO Nanorods , 2007 .

[13]  Masayoshi Tonouchi,et al.  Properties of InxGa1−xN films in terahertz range , 2012 .

[14]  Charles A Schmuttenmaer,et al.  Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. , 2006, The journal of physical chemistry. B.

[15]  Yong Ding,et al.  Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays , 2009, Nanotechnology.

[16]  Soner Balci,et al.  Characteristics of THz carrier dynamics in GaN thin film and ZnO nanowires by temperature dependent terahertz time domain spectroscopy measurement , 2012 .

[17]  Teerakiat Kerdcharoen,et al.  Sensor response formula for sensor based on ZnO nanostructures , 2010 .

[18]  Rui Huang,et al.  Tuning the optical and electrical properties of hydrothermally grown ZnO nanowires by sealed post annealing treatment , 2013 .

[19]  Jianshi Tang,et al.  Electric-field control of ferromagnetism in Mn-doped ZnO nanowires. , 2014, Nano letters.

[20]  A. Sood,et al.  A Comparison of ZnO Nanowires and Nanorods Grown Using MOCVD and Hydrothermal Processes , 2013, Journal of Electronic Materials.

[21]  Abdiel Rivera,et al.  Optical parameters of Zn1−xMgxO nanowires in THz regime , 2014 .

[22]  V. Ursaki,et al.  Epitaxial Electrodeposition of ZnO Nanowire Arrays on p-GaN for Efficient UV-Light-Emitting Diode Fabrication , 2010 .

[23]  Hyung-Kee Seo,et al.  Room temperature synthesis of needle-shaped ZnO nanorods via sonochemical method , 2007 .

[24]  Yang Hao,et al.  Terahertz time-domain spectroscopy characterization of vertically aligned carbon nanotube films , 2012 .

[25]  Christoph Weder,et al.  Terahertz Photonic Crystals Based on Barium Titanate/Polymer Nanocomposites , 2008 .

[26]  F. Kernan,et al.  Material Characterization of Zinc Oxide in Bulk and Nanowire Form at Terahertz Frequencies , 2012 .

[27]  Paul H. Wöbkenberg,et al.  High‐Performance Zinc Oxide Transistors and Circuits Fabricated by Spray Pyrolysis in Ambient Atmosphere , 2009 .

[28]  Savas Kaya,et al.  UV and Oxygen Sensing Properties and Space Charge Limited Transport of Sonochemically Grown ZnO Nanowires , 2012 .

[29]  Rashid Ahmed,et al.  Structural, electronic and thermodynamic properties of wide band gap MgxZn1 − xO alloy , 2007 .