A VARIATIONAL DEDUCTION OF SECOND GRADIENT POROELASTICITY PART I: GENERAL THEORY

Second gradient theories have to be used to capture how local micro heterogeneities macroscopically affect the behavior of a continuum. In this paper a configurational space for a solid matrix filled by an unknown amount of fluid is introduced. The Euler–Lagrange equations valid for second gradient poromechanics, generalizing those due to Biot, are deduced by means of a Lagrangian variational formulation. Starting from a generalized Clausius–Duhem inequality, valid in the framework of second gradient theories, the existence of a macroscopic solid skeleton Lagrangian deformation energy, depending on the solid strain and the Lagrangian fluid mass density as well as on their Lagrangian gradients, is proven.

[1]  P. Seppecher,et al.  Edge Contact Forces and Quasi-Balanced Power , 1997, 1007.1450.

[2]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[3]  P. Seppecher,et al.  Determination of the Closure of the Set of Elasticity Functionals , 2003 .

[4]  P. Seppecher Equilibrium of a Cahn-Hilliard fluid on a wall: influence of the wetting properties of the fluid upon the stability of a thin liquid film , 1993 .

[5]  Henri Gouin,et al.  Nucleation of spherical shell-like interfaces by second gradient theory: numerical simulations , 1996, 0906.1897.

[6]  Clifford Ambrose Truesdell,et al.  A first course in rational continuum mechanics , 1976 .

[7]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[8]  Hakobyan Yeranuhi,et al.  Random Heterogeneous Materials , 2008 .

[9]  J. A. Salvato John wiley & sons. , 1994, Environmental science & technology.

[10]  P. Gennes Wetting: statics and dynamics , 1985 .

[11]  A. Bedford,et al.  A variational theory of immiscible mixtures , 1978 .

[12]  W. Ehlers An elastoplasticity model in porous media theories , 1992 .

[13]  C. Cryer,et al.  A COMPARISON OF THE THREE-DIMENSIONAL CONSOLIDATION THEORIES OF BIOT AND TERZAGHI , 1963 .

[14]  R. Batra,et al.  Static Deformations of a Linear Elastic Porous Body Filled with an Inviscid Fluid , 2003 .

[15]  W. Drugan,et al.  A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites , 1996 .

[16]  Olivier Coussy,et al.  Poromechanics of freezing materials , 2005 .

[17]  Emmanuel M Detournay,et al.  From mixture theory to biot’s approach for porous media , 1998 .

[18]  H. Brinkman A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles , 1949 .

[19]  F. Gantmacher Lectures in Analytical Mechanics , 1975 .

[20]  T. Ruggeri,et al.  Hamiltonian Principle in Binary Mixtures of Euler Fluids with Applications to the Second Sound Phenomena , 2003, 0805.4522.

[21]  V. Kouznetsova,et al.  Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .

[22]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[23]  J. Mandel Consolidation Des Sols (Étude Mathématique) , 1953 .

[24]  L. Dormieux,et al.  Macroscopic and Micromechanical Approaches to the Modelling of the Osmotic Swelling in Clays , 2003 .

[25]  René Chambon,et al.  A strain space gradient plasticity theory for finite strain , 2004 .

[26]  Olivier Coussy,et al.  Second gradient poromechanics , 2007 .

[27]  A. Srinivasa,et al.  Diffusion of a fluid through an elastic solid undergoing large deformation , 2004 .

[28]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[29]  K. Wilmanski,et al.  Porous media at finite strains. The new model with the balance equation for porosity , 1996 .

[30]  S. Gavrilyuk,et al.  Hyperbolic Models of Homogeneous Two-Fluid Mixtures , 1998, 0802.1120.

[31]  Pierre Seppecher,et al.  A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium , 1997 .

[32]  K. Terzaghi Theoretical Soil Mechanics , 1943 .

[33]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.