Sodium-potassium niobate nanorods with various crystal structures and their application to nanogenerator

(Na1−xKx)NbO3 (NKN) nanorods with an orthorhombic (OR) structure, a rhombohedral (RH) structure, or a polymorphic phase (PP) structure, which contains both OR and RH structures, are prepared. The presence of RH and PP NKN nanorods is explained by the existence of OH− defects at the O2− sites of the NKN nanorods. The PP NKN nanorods grown on a Nb5+-doped SrTiO3 substrate show the largest piezoelectric strain constant of 175 pm/V because they have more directions for dipole rotation than OR and RH NKN nanorods. Piezoelectric nanogenerators (NGs) are synthesized using composites consisting of NKN nanorods with various structures and polydimethylsiloxane. The largest open-circuit output voltage is 35 V, and the short-circuit current is 5.0 μA, which are obtained using the NG containing 0.7 g of PP NKN nanorods. Moreover, this NG shows a maximum output power of 16.5 μW for an external load of 10.0 MΩ.

[1]  Chengming Jiang,et al.  High output nano-energy cell with piezoelectric nanogenerator and porous supercapacitor dual functions – A technique to provide sustaining power by harvesting intermittent mechanical energy from surroundings , 2016 .

[2]  P. Goldner,et al.  Nanostructured rare earth doped Nb2O5: Structural, optical properties and their correlation with photonic applications , 2016 .

[3]  A. del Campo,et al.  Lead-Free Piezoceramics: Revealing the Role of the Rhombohedral-Tetragonal Phase Coexistence in Enhancement of the Piezoelectric Properties. , 2015, ACS applied materials & interfaces.

[4]  Seung M. Oh,et al.  Enhanced piezoelectric properties of vertically aligned single-crystalline NKN nano-rod arrays , 2015, Scientific Reports.

[5]  Jeong Min Baik,et al.  Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles , 2015 .

[6]  S. Nahm,et al.  High‐Performance (Na0.5K0.5)NbO3 Thin Film Piezoelectric Energy Harvester , 2015 .

[7]  S. Nahm,et al.  Piezoelectric nanogenerators synthesized using KNbO3 nanowires with various crystal structures , 2014 .

[8]  Liwei Lin,et al.  High quality Mn-doped (Na,K)NbO3 nanofibers for flexible piezoelectric nanogenerators. , 2014, ACS applied materials & interfaces.

[9]  Geon-Tae Hwang,et al.  Large‐Area and Flexible Lead‐Free Nanocomposite Generator Using Alkaline Niobate Particles and Metal Nanorod Filler , 2014 .

[10]  Joo-Yun Jung,et al.  Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. , 2014, ACS nano.

[11]  Jiaguo Yu,et al.  Photocatalytic water splitting for hydrogen generation on cubic, orthorhombic, and tetragonal KNbO3 microcubes. , 2013, Nanoscale.

[12]  S. H. Choy,et al.  Highly durable all-fiber nanogenerator for mechanical energy harvesting , 2013 .

[13]  Zhong Lin Wang,et al.  BaTiO3 Nanotubes-Based Flexible and Transparent Nanogenerators. , 2012, The journal of physical chemistry letters.

[14]  S. Nahm,et al.  Synthesis of homogeneous (Na1−xKx)NbO3 nanorods using hydrothermal and post-heat treatment processes , 2012 .

[15]  Ya Yang,et al.  Flexible Pyroelectric Nanogenerators using a Composite Structure of Lead‐Free KNbO3 Nanowires , 2012, Advanced materials.

[16]  Zhong Lin Wang,et al.  Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors , 2012, Nanotechnology.

[17]  Minbaek Lee,et al.  Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons , 2012, Advanced materials.

[18]  J. J. Romero,et al.  High spatial resolution structure of (K,Na)NbO3 lead-free ferroelectric domains , 2012 .

[19]  Nan Yao,et al.  PMN-PT nanowires with a very high piezoelectric constant. , 2012, Nano letters.

[20]  Zhong Lin Wang,et al.  Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator. , 2011, ACS nano.

[21]  E. Soergel Piezoresponse force microscopy (PFM) , 2011 .

[22]  Y. Koo,et al.  Effect of hydroxyl group on global and local structures of hydrothermally grown KNbO3 nanorods , 2011 .

[23]  Jingping Wang,et al.  A new two-dimensional polyoxoniobate built by Lindqvist-type polyoxoanion and copper coordinated cations K2[Cu(H2O)6]{[Nb6O19][Cu(NH3)]2}·8H2O , 2011 .

[24]  Geon-Tae Hwang,et al.  Piezoelectric BaTiO₃ thin film nanogenerator on plastic substrates. , 2010, Nano letters.

[25]  J. Romero,et al.  Effect of the temperature on the synthesis of (K,Na)NbO3-modified nanoparticles by a solid state reaction route , 2010 .

[26]  J. Hlinka,et al.  Domain walls of ferroelectric BaTiO 3 within the Ginzburg-Landau-Devonshire phenomenological model , 2010, 1001.1376.

[27]  J. Yeh,et al.  Sodium Niobate Nanowire and Its Piezoelectricity , 2008 .

[28]  T. Takei,et al.  Preparation of KNbO3 by hydrothermal reaction , 2007 .

[29]  Pilar Ochoa,et al.  Sintering and properties of lead-free (K,Na,Li)(Nb,Ta,Sb)O3 ceramics , 2007 .

[30]  Xiaolin Li,et al.  Synthesis and characterization of nanocrystalline niobates , 2003 .

[31]  S. Haile,et al.  Hydrothermal synthesis of perovskite and pyrochlore powders of potassium tantalate , 2002 .

[32]  M. T. Pope,et al.  Robust, alkali-stable, triscarbonyl metal derivatives of hexametalate anions, [M6O19[M'(CO)3]n](8-n)- (M = Nb, Ta; M' =Mn, Re; n = 1, 2). , 2001, Inorganic chemistry.

[33]  S. Wada,et al.  Role of Lattice Defects in the Size Effect of Barium Titanate Fine Particles , 1996 .

[34]  S. Wada,et al.  Preparation of barium titanate fine particles by hydrothermal method and their characterization , 1995 .

[35]  R. E. Jaeger,et al.  Hot Pressing of Potassium‐Sodium Niobates , 1962 .

[36]  L. Egerton,et al.  Piezoelectric and Dielectric Properties of Ceramics in the System Potassium—Sodium Niobate , 1959 .