Modeling and Estimation of Energy‐Based Hyperelastic Objects

In this paper, we present a method to model hyperelasticity that is well suited for representing the nonlinearity of real‐world objects, as well as for estimating it from deformation examples. Previous approaches suffer several limitations, such as lack of integrability of elastic forces, failure to enforce energy convexity, lack of robustness of parameter estimation, or difficulty to model cross‐modal effects. Our method avoids these problems by relying on a general energy‐based definition of elastic properties. The accuracy of the resulting elastic model is maximized by defining an additive model of separable energy terms, which allow progressive parameter estimation. In addition, our method supports efficient modeling of extreme nonlinearities thanks to energy‐limiting constraints. We combine our energy‐based model with an optimization method to estimate model parameters from force‐deformation examples, and we show successful modeling of diverse deformable objects, including cloth, human finger skin, and internal human anatomy in a medical imaging application.

[1]  Ronald Fedkiw,et al.  Volume conserving finite element simulations of deformable models , 2007, ACM Trans. Graph..

[2]  Sidney Fels,et al.  ArtiSynth: A Fast Interactive Biomechanical Modeling Toolkit Combining Multibody and Finite Element Simulation , 2012 .

[3]  Eftychios Sifakis,et al.  Simulation of complex nonlinear elastic bodies using lattice deformers , 2012, ACM Trans. Graph..

[4]  J. Kajberg,et al.  Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields , 2004 .

[5]  Ronald Fedkiw,et al.  Simulation of clothing with folds and wrinkles , 2003, SCA '03.

[6]  J. Weiss,et al.  Finite element implementation of incompressible, transversely isotropic hyperelasticity , 1996 .

[7]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[8]  Benjamin J. Ellis,et al.  FEBio: finite elements for biomechanics. , 2012, Journal of biomechanical engineering.

[9]  Dinesh K. Pai,et al.  Scanning physical interaction behavior of 3D objects , 2001, SIGGRAPH.

[10]  Olga Sorkine-Hornung,et al.  Texture Mapping Real‐World Objects with Hydrographics , 2015, SGP '15.

[11]  M. Otaduy,et al.  Capture and modeling of non-linear heterogeneous soft tissue , 2009, ACM Trans. Graph..

[12]  Hans-Peter Seidel,et al.  Measurement‐Based Interactive Simulation of Viscoelastic Solids , 2004, Comput. Graph. Forum.

[13]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[14]  Huamin Wang,et al.  Multi-resolution isotropic strain limiting , 2010, ACM Trans. Graph..

[15]  P. Neff,et al.  Construction of polyconvex energies for non-trivial anisotropy classes , 2010 .

[16]  William T. Freeman,et al.  Estimating the Material Properties of Fabric from Video , 2013, 2013 IEEE International Conference on Computer Vision.

[17]  David E. Breen,et al.  Predicting the drape of woven cloth using interacting particles , 1994, SIGGRAPH.

[18]  M. R. Barnes,et al.  Form-finding and analysis of prestressed nets and membranes , 1988 .

[19]  Huamin Wang,et al.  Data-driven elastic models for cloth: modeling and measurement , 2011, ACM Trans. Graph..

[20]  Xavier Provot,et al.  Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior , 1995 .

[21]  Steve Marschner,et al.  Data‐Driven Estimation of Cloth Simulation Models , 2012, Comput. Graph. Forum.

[22]  Jernej Barbic,et al.  FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction , 2012, SIGGRAPH '12.

[23]  A. Douglas,et al.  Physically based strain invariant set for materials exhibiting transversely isotropic behavior , 2001 .

[24]  James F. O'Brien,et al.  Adaptive anisotropic remeshing for cloth simulation , 2012, ACM Trans. Graph..

[25]  Bin Wang,et al.  Deformation capture and modeling of soft objects , 2015, ACM Trans. Graph..

[26]  Miguel A. Otaduy,et al.  Strain limiting for soft finger contact simulation , 2013, 2013 World Haptics Conference (WHC).

[27]  Miguel A. Otaduy,et al.  Fast deformation of volume data using tetrahedral mesh rasterization , 2013, SCA '13.

[28]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.

[29]  Andrew Taberner,et al.  Modeling the Mechanical Response of In Vivo Human Skin Under a Rich Set of Deformations , 2011, Annals of Biomedical Engineering.

[30]  Markus H. Gross,et al.  Interactive Virtual Materials , 2004, Graphics Interface.

[31]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[32]  Nadia Magnenat-Thalmann,et al.  A simple approach to nonlinear tensile stiffness for accurate cloth simulation , 2009, TOGS.

[33]  Kun Zhou,et al.  Computational hydrographic printing , 2015, ACM Trans. Graph..

[34]  R. Ogden,et al.  Hyperelastic modelling of arterial layers with distributed collagen fibre orientations , 2006, Journal of The Royal Society Interface.

[35]  Steve Marschner,et al.  Modeling and estimation of internal friction in cloth , 2013, ACM Trans. Graph..

[36]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[37]  Jernej Barbic,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, ACM Trans. Graph..

[38]  Mathieu Desbrun,et al.  Discrete shells , 2003, SCA '03.

[39]  Wolfgang Straßer,et al.  Continuum‐based Strain Limiting , 2009, Comput. Graph. Forum.

[40]  Wojciech Matusik,et al.  Data-driven finite elements for geometry and material design , 2015, ACM Trans. Graph..

[41]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[42]  MatusikWojciech,et al.  Data-driven finite elements for geometry and material design , 2015 .

[43]  Matthias Teschner,et al.  Robust and Efficient Estimation of Elasticity Parameters using the linear Finite Element Method , 2007, SimVis.

[44]  Reinhard Klein,et al.  A variational approach for automatic generation of panoramic maps , 2009, ACM Trans. Graph..

[45]  Ronald Fedkiw,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2006) Simulating Speech with a Physics-based Facial Muscle Model , 2022 .

[46]  Nadia Magnenat-Thalmann,et al.  Stop-and-go cloth draping , 2007, The Visual Computer.

[47]  Sébastien Ourselin,et al.  A hybrid fem-based method for aligning prone and supine images for image guided breast surgery , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[48]  川端 季雄,et al.  The standardization and analysis of hand evaluation. , 1975 .

[49]  Hongyi Xu,et al.  Nonlinear material design using principal stretches , 2015, ACM Trans. Graph..

[50]  Eitan Grinspun,et al.  To appear in the ACM SIGGRAPH conference proceedings Efficient Simulation of Inextensible Cloth , 2007 .

[51]  John P. Lewis,et al.  Scan-Based Volume Animation Driven by Locally Adaptive Articulated Registrations , 2011, IEEE Transactions on Visualization and Computer Graphics.

[52]  Ferdinando Cannella,et al.  Characterization of nonlinear finger pad mechanics for tactile rendering , 2015, 2015 IEEE World Haptics Conference (WHC).

[53]  Jessica K. Hodgins,et al.  Estimating cloth simulation parameters from video , 2003, SCA '03.

[54]  Gábor Székely,et al.  Inverse Finite Element Characterization of Soft Tissues , 2001, MICCAI.