Entanglement dynamics in one-dimensional quantum cellular automata

Several proposed schemes for the physical realization of a quantum computer consist of qubits arranged in a cellular array. In the quantum circuit model of quantum computation, an often complex series of two-qubit gate operations is required between arbitrarily distant pairs of lattice qubits. An alternative model of quantum computation based on quantum cellular automata (QCA) requires only homogeneous local interactions that can be implemented in parallel. This would be a huge simplification in an actual experiment. We find some minimal physical requirements for the construction of unitary QCA in a one-dimensional Ising spin chain and demonstrate optimal pulse sequences for information transport and entanglement distribution. We also introduce the theory of nonunitary QCA and show by example that nonunitary rules can generate environment assisted entanglement.

[1]  D. Meyer From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.

[2]  J. Crutchfield The calculi of emergence: computation, dynamics and induction , 1994 .

[3]  S. C. Benjamin Schemes for parallel quantum computation without local control of qubits , 2000 .

[4]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[5]  Daegene Song,et al.  Quantum-Computer Architecture Using Nonlocal Interactions , 2003, quant-ph/0301012.

[6]  Lorenza Viola,et al.  Engineering quantum dynamics , 2001 .

[7]  R. Brockett,et al.  Time optimal control in spin systems , 2000, quant-ph/0006114.

[8]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[9]  FROM GAUGE TRANSFORMATIONS TO TOPOLOGY COMPUTATION IN QUANTUM LATTICE GAS AUTOMATA , 1997, quant-ph/0105087.

[10]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[11]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[12]  Carlton M. Caves,et al.  QUANTUM LOGIC GATES IN OPTICAL LATTICES , 1999 .

[13]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[14]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[15]  E. B. Davies,et al.  Information and quantum measurement , 1978, IEEE Trans. Inf. Theory.

[16]  Simon C Benjamin,et al.  Quantum computing without local control of qubit-qubit interactions. , 2001, Physical review letters.

[17]  Navin Khaneja,et al.  Efficient transfer of coherence through Ising spin chains , 2002 .

[18]  J. Twamley,et al.  Quantum-cellular-automata quantum computing with endohedral fullerenes , 2002, quant-ph/0210202.

[19]  M. Lukin,et al.  Controlling spin exchange interactions of ultracold atoms in optical lattices. , 2002, Physical review letters.

[20]  G. Tóth,et al.  Quantum computing with quantum-dot cellular automata , 2001 .

[21]  D. Meyer,et al.  Global entanglement in multiparticle systems , 2001, quant-ph/0108104.