Representing logics and logic translations
暂无分享,去创建一个
[1] F. W. Lawvere,et al. FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.
[2] R. Seely,et al. Locally cartesian closed categories and type theory , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.
[3] S. Wölfl,et al. The Heterogeneous Tool Set , 2007 .
[4] Lawrence Charles Paulson,et al. Isabelle: A Generic Theorem Prover , 1994 .
[5] Jamie Tappenden. Recent Work in Philosophy of Mathematics , 2001 .
[6] Michael Kohlhase,et al. Notations for Living Mathematical Documents , 2008, AISC/MKM/Calculemus.
[7] Till Mossakowski. Specifications in an Arbitrary Institution with Symbols , 1999, WADT.
[8] George Voutsadakis,et al. Introduction to Set Theory , 2021, A Problem Based Journey from Elementary Number Theory to an Introduction to Matrix Theory.
[9] Shankar Natarajan,et al. The Formal Semantics of PVS , 1999 .
[10] Andrew M. Odlyzko,et al. Tragic Loss or Good Riddance? The Impending Demise of Traditional Scholary Journals , 1996, J. Univers. Comput. Sci..
[11] Michael Kohlhase,et al. OMDoc - An Open Markup Format for Mathematical Documents [version 1.2] , 2006, Lecture Notes in Computer Science.
[12] Till Mossakowski,et al. Combining and Representing Logical Systems , 1997, Category Theory and Computer Science.
[13] D. Walker,et al. A concurrent logical framework I: Judgments and properties , 2003 .
[14] E. Zermelo. Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .
[15] José Meseguer,et al. The HOL/NuPRL Proof Translator (A Practical Approach to Formal Interoperability) , 2001, TPHOLs.
[16] Michael Kohlhase,et al. MathDox : mathematical documents on the web , 2006 .
[17] Eric T. Bell,et al. The Philosophy of Mathematics , 1950 .
[18] Michael Kohlhase,et al. A Search Engine for Mathematical Formulae , 2006, AISC.
[19] T. Streicher. Semantics of Type Theory , 1991, Progress in Theoretical Computer Science.
[20] Max J. Cresswell,et al. A New Introduction to Modal Logic , 1998 .
[21] Geoff Sutcliffe,et al. The development of CASC , 2002, AI Commun..
[22] J. Heijenoort. From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .
[23] Christoph Weidenbach,et al. S PASS Version 2.0 , 2002, CADE.
[24] Joseph A. Goguen,et al. What is a Logic , 2007 .
[25] Saul A. Kripke,et al. Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .
[26] Till Mossakowski,et al. Heterogeneous Specification and the Heterogeneous Tool Set , 2004 .
[27] Donald Sannella,et al. Toward formal development of programs from algebraic specifications: Parameterisation revisited , 1992, Acta Informatica.
[28] Florian Rabe,et al. First-Order Logic with Dependent Types , 2006, IJCAR.
[29] J. Lambek,et al. Introduction to higher order categorical logic , 1986 .
[30] Dieter Hutter,et al. Development graphs - Proof management for structured specifications , 2006, J. Log. Algebraic Methods Program..
[31] Steven Obua,et al. Importing HOL into Isabelle/HOL , 2006, IJCAR.
[32] Prakash Panangaden,et al. Categorical Type Theory , 1985 .
[33] Mark-Oliver Stehr,et al. An Executable Formalization of the HOL/Nuprl Connection in the Metalogical Framework Twelf , 2006, LPAR.
[34] B. Russell. Mathematical Logic as Based on the Theory of Types , 1908 .
[35] Saunders Mac Lane,et al. One universe as a foundation for category theory , 1969 .
[36] A. Tarski,et al. Arithmetical extensions of relational systems , 1958 .
[37] Lawrence Charles Paulson,et al. Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .
[38] Andrzej Trybulec,et al. Computer Assisted Reasoning with MIZAR , 1985, IJCAI.
[39] Henry S. Rzepa,et al. Chemical Markup, XML, and the World Wide Web. 4. CML Schema , 2003, J. Chem. Inf. Comput. Sci..
[40] Andrzej Tarlecki. Moving Between Logical Systems , 1995, COMPASS/ADT.
[41] P. Johnstone. Sketches of an Elephant: A Topos Theory Compendium Volume 1 , 2002 .
[42] Frank Pfenning,et al. Structural cut elimination , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.
[43] William A. Howard,et al. The formulae-as-types notion of construction , 1969 .
[44] Ian Horrocks. The FaCT System , 1998, TABLEAUX.
[45] Anthony Hunter,et al. Paraconsistent logics , 1998 .
[46] Josef Urban. Translating Mizar for First Order Theorem Provers , 2003, MKM.
[47] S. Lane,et al. Sheaves In Geometry And Logic , 1992 .
[48] F. William Lawvere,et al. Adjointness in Foundations , 1969 .
[49] Freek Wiedijk. Comparing Mathematical Provers , 2003, MKM.
[50] P. Martin-Löf. On the meanings of the logical constants and the justi cations of the logical laws , 1996 .
[51] Ullrich Hustadt,et al. MSPASS: Modal Reasoning by Translation and First-Order Resolution , 2000, TABLEAUX.
[52] Markus Wenzel,et al. Constructive Type Classes in Isabelle , 2006, TYPES.
[53] F. Honsell,et al. A Framework for De ning LogicsRobert Harper , 1987 .
[54] H. Weyl,et al. Das Kontinuum : kritische Untersuchungen über die Grundlagen der Analysis , 1932 .
[55] Bart Jacobs,et al. Translating Dependent Type Theory into Higher Order Logic , 1993, TLCA.
[56] Jean-Pierre Bourguignon,et al. Mathematische Annalen , 1893 .
[57] Florian Kammüller,et al. Locales - A Sectioning Concept for Isabelle , 1999, TPHOLs.
[58] Leon Henkin,et al. Completeness in the theory of types , 1950, Journal of Symbolic Logic.
[59] C. Lewis,et al. A Survey Of Symbolic Logic , 1920 .
[60] Frank Pfenning. Structural Cut Elimination: I. Intuitionistic and Classical Logic , 2000, Inf. Comput..
[61] Andrei Voronkov,et al. The design and implementation of VAMPIRE , 2002, AI Commun..
[62] Alfred Tarski,et al. On the Application of Symbolic Logic to Algebra , 1953 .
[63] Roberto Virga,et al. Higher-Order Superposition for Dependent Types , 1996, RTA.
[64] James Lipton,et al. Kripke Semantics for Dependent Type Theory and Realizability Interpretations , 1992, Constructivity in Computer Science.
[65] Carsten Schürmann,et al. Practical Programming with Higher-Order Encodings and Dependent Types , 2008, ESOP.
[66] Andrew M. Pitts,et al. Categorical logic , 2001, LICS 2001.
[67] Sean McLaughlin,et al. An Interpretation of Isabelle/HOL in HOL Light , 2006, IJCAR.
[68] C. Peirce. On the Algebra of Logic: A Contribution to the Philosophy of Notation , 1885 .
[69] D. Hilbert. Über das Unendliche , 1926 .
[70] G. B. M.. Principia Mathematica , 1911, Nature.
[71] Frank Pfenning,et al. Logical Frameworks , 2001, Handbook of Automated Reasoning.
[72] Martin Hofmann,et al. On the Interpretation of Type Theory in Locally Cartesian Closed Categories , 1994, CSL.
[73] J. Neumann. Eine Axiomatisierung der Mengenlehre. , 1925 .
[74] John C. Reynolds,et al. Towards a theory of type structure , 1974, Symposium on Programming.
[75] Stephan Schulz. System Abstract: E 0.61 , 2001, IJCAR.
[76] Henry S. Rzepa,et al. Chemical Markup, XML, and the Worldwide Web. 1. Basic Principles , 1999, J. Chem. Inf. Comput. Sci..
[77] Alex K. Simpson. Categorical completeness results for the simply-typed lambda-calculus , 1995, TLCA.
[78] Tobias Nipkow,et al. Structured Proofs in Isar/HOL , 2002, TYPES.
[79] P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part , 1975 .
[80] Frank Pfenning,et al. System Description: Twelf - A Meta-Logical Framework for Deductive Systems , 1999, CADE.
[81] H. Weyl,et al. The Continuum: A Critical Examination of the Foundation of Analysis , 1987 .
[82] A. Tarski,et al. Über unerreichbare Kardinalzahlen , 1938 .
[83] Marius Petria. An Institutional Version of Gödel's Completeness Theorem , 2007, CALCO.
[84] Saul A. Kripke,et al. Semantical Analysis of Intuitionistic Logic I , 1965 .
[85] John C. Mitchell,et al. Kripke-Style Models for Typed lambda Calculus , 1991, Ann. Pure Appl. Log..