Representing logics and logic translations

Logic is the study of formal languages for propositions and truth. Logics are used both as a foundation of mathematics and as specification languages in mathematics and computer science. Since logic is intricately intertwined with the nature of mathematics, the question how to represent logics in our minds is a constant challenge to our understanding. And only when it is understood can we begin to answer the corresponding question about logic translations. At the same time logics are used to a large extent in computer science to reason about both mathematics and software systems. This brings up the question how logics and their translations can be represented in a computer system. Throughout the 20th century several answers have already been provided. Most of them can be grouped into two kinds, which can be denoted by set/model theory and type/proof theory. We base our investigation on the desire to reconcile these two views. Our focus is on extending the existing notions of logic and logic translation in a way that retains their nature and the accumulated knowledge about them while leading them into a new direction. Our goal is to enrich both research fields by applying them more cogently to and making them more accessible and understandable to one another. While this answers the question how to represent logics and logic translations in our minds, it is not adequate for the specific constraints and use cases of software systems. Therefore, in a second investigation, we explore how to make our representations more concrete and robust enough to permit a mechanized treatment on a large scale. Taking these two results together, we obtain a triangle of different mathematical communities, research objectives, and philosophies consisting of set/model theory, proof/type theory, and mathematical knowledge management. Our main contribution is to integrate its corners into a coherent framework centered around logic that capitalizes on their comparative advantages.

[1]  F. W. Lawvere,et al.  FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[2]  R. Seely,et al.  Locally cartesian closed categories and type theory , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  S. Wölfl,et al.  The Heterogeneous Tool Set , 2007 .

[4]  Lawrence Charles Paulson,et al.  Isabelle: A Generic Theorem Prover , 1994 .

[5]  Jamie Tappenden Recent Work in Philosophy of Mathematics , 2001 .

[6]  Michael Kohlhase,et al.  Notations for Living Mathematical Documents , 2008, AISC/MKM/Calculemus.

[7]  Till Mossakowski Specifications in an Arbitrary Institution with Symbols , 1999, WADT.

[8]  George Voutsadakis,et al.  Introduction to Set Theory , 2021, A Problem Based Journey from Elementary Number Theory to an Introduction to Matrix Theory.

[9]  Shankar Natarajan,et al.  The Formal Semantics of PVS , 1999 .

[10]  Andrew M. Odlyzko,et al.  Tragic Loss or Good Riddance? The Impending Demise of Traditional Scholary Journals , 1996, J. Univers. Comput. Sci..

[11]  Michael Kohlhase,et al.  OMDoc - An Open Markup Format for Mathematical Documents [version 1.2] , 2006, Lecture Notes in Computer Science.

[12]  Till Mossakowski,et al.  Combining and Representing Logical Systems , 1997, Category Theory and Computer Science.

[13]  D. Walker,et al.  A concurrent logical framework I: Judgments and properties , 2003 .

[14]  E. Zermelo Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .

[15]  José Meseguer,et al.  The HOL/NuPRL Proof Translator (A Practical Approach to Formal Interoperability) , 2001, TPHOLs.

[16]  Michael Kohlhase,et al.  MathDox : mathematical documents on the web , 2006 .

[17]  Eric T. Bell,et al.  The Philosophy of Mathematics , 1950 .

[18]  Michael Kohlhase,et al.  A Search Engine for Mathematical Formulae , 2006, AISC.

[19]  T. Streicher Semantics of Type Theory , 1991, Progress in Theoretical Computer Science.

[20]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[21]  Geoff Sutcliffe,et al.  The development of CASC , 2002, AI Commun..

[22]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[23]  Christoph Weidenbach,et al.  S PASS Version 2.0 , 2002, CADE.

[24]  Joseph A. Goguen,et al.  What is a Logic , 2007 .

[25]  Saul A. Kripke,et al.  Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .

[26]  Till Mossakowski,et al.  Heterogeneous Specification and the Heterogeneous Tool Set , 2004 .

[27]  Donald Sannella,et al.  Toward formal development of programs from algebraic specifications: Parameterisation revisited , 1992, Acta Informatica.

[28]  Florian Rabe,et al.  First-Order Logic with Dependent Types , 2006, IJCAR.

[29]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[30]  Dieter Hutter,et al.  Development graphs - Proof management for structured specifications , 2006, J. Log. Algebraic Methods Program..

[31]  Steven Obua,et al.  Importing HOL into Isabelle/HOL , 2006, IJCAR.

[32]  Prakash Panangaden,et al.  Categorical Type Theory , 1985 .

[33]  Mark-Oliver Stehr,et al.  An Executable Formalization of the HOL/Nuprl Connection in the Metalogical Framework Twelf , 2006, LPAR.

[34]  B. Russell Mathematical Logic as Based on the Theory of Types , 1908 .

[35]  Saunders Mac Lane,et al.  One universe as a foundation for category theory , 1969 .

[36]  A. Tarski,et al.  Arithmetical extensions of relational systems , 1958 .

[37]  Lawrence Charles Paulson,et al.  Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .

[38]  Andrzej Trybulec,et al.  Computer Assisted Reasoning with MIZAR , 1985, IJCAI.

[39]  Henry S. Rzepa,et al.  Chemical Markup, XML, and the World Wide Web. 4. CML Schema , 2003, J. Chem. Inf. Comput. Sci..

[40]  Andrzej Tarlecki Moving Between Logical Systems , 1995, COMPASS/ADT.

[41]  P. Johnstone Sketches of an Elephant: A Topos Theory Compendium Volume 1 , 2002 .

[42]  Frank Pfenning,et al.  Structural cut elimination , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[43]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[44]  Ian Horrocks The FaCT System , 1998, TABLEAUX.

[45]  Anthony Hunter,et al.  Paraconsistent logics , 1998 .

[46]  Josef Urban Translating Mizar for First Order Theorem Provers , 2003, MKM.

[47]  S. Lane,et al.  Sheaves In Geometry And Logic , 1992 .

[48]  F. William Lawvere,et al.  Adjointness in Foundations , 1969 .

[49]  Freek Wiedijk Comparing Mathematical Provers , 2003, MKM.

[50]  P. Martin-Löf On the meanings of the logical constants and the justi cations of the logical laws , 1996 .

[51]  Ullrich Hustadt,et al.  MSPASS: Modal Reasoning by Translation and First-Order Resolution , 2000, TABLEAUX.

[52]  Markus Wenzel,et al.  Constructive Type Classes in Isabelle , 2006, TYPES.

[53]  F. Honsell,et al.  A Framework for De ning LogicsRobert Harper , 1987 .

[54]  H. Weyl,et al.  Das Kontinuum : kritische Untersuchungen über die Grundlagen der Analysis , 1932 .

[55]  Bart Jacobs,et al.  Translating Dependent Type Theory into Higher Order Logic , 1993, TLCA.

[56]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[57]  Florian Kammüller,et al.  Locales - A Sectioning Concept for Isabelle , 1999, TPHOLs.

[58]  Leon Henkin,et al.  Completeness in the theory of types , 1950, Journal of Symbolic Logic.

[59]  C. Lewis,et al.  A Survey Of Symbolic Logic , 1920 .

[60]  Frank Pfenning Structural Cut Elimination: I. Intuitionistic and Classical Logic , 2000, Inf. Comput..

[61]  Andrei Voronkov,et al.  The design and implementation of VAMPIRE , 2002, AI Commun..

[62]  Alfred Tarski,et al.  On the Application of Symbolic Logic to Algebra , 1953 .

[63]  Roberto Virga,et al.  Higher-Order Superposition for Dependent Types , 1996, RTA.

[64]  James Lipton,et al.  Kripke Semantics for Dependent Type Theory and Realizability Interpretations , 1992, Constructivity in Computer Science.

[65]  Carsten Schürmann,et al.  Practical Programming with Higher-Order Encodings and Dependent Types , 2008, ESOP.

[66]  Andrew M. Pitts,et al.  Categorical logic , 2001, LICS 2001.

[67]  Sean McLaughlin,et al.  An Interpretation of Isabelle/HOL in HOL Light , 2006, IJCAR.

[68]  C. Peirce On the Algebra of Logic: A Contribution to the Philosophy of Notation , 1885 .

[69]  D. Hilbert Über das Unendliche , 1926 .

[70]  G. B. M. Principia Mathematica , 1911, Nature.

[71]  Frank Pfenning,et al.  Logical Frameworks , 2001, Handbook of Automated Reasoning.

[72]  Martin Hofmann,et al.  On the Interpretation of Type Theory in Locally Cartesian Closed Categories , 1994, CSL.

[73]  J. Neumann Eine Axiomatisierung der Mengenlehre. , 1925 .

[74]  John C. Reynolds,et al.  Towards a theory of type structure , 1974, Symposium on Programming.

[75]  Stephan Schulz System Abstract: E 0.61 , 2001, IJCAR.

[76]  Henry S. Rzepa,et al.  Chemical Markup, XML, and the Worldwide Web. 1. Basic Principles , 1999, J. Chem. Inf. Comput. Sci..

[77]  Alex K. Simpson Categorical completeness results for the simply-typed lambda-calculus , 1995, TLCA.

[78]  Tobias Nipkow,et al.  Structured Proofs in Isar/HOL , 2002, TYPES.

[79]  P. Martin-Löf An Intuitionistic Theory of Types: Predicative Part , 1975 .

[80]  Frank Pfenning,et al.  System Description: Twelf - A Meta-Logical Framework for Deductive Systems , 1999, CADE.

[81]  H. Weyl,et al.  The Continuum: A Critical Examination of the Foundation of Analysis , 1987 .

[82]  A. Tarski,et al.  Über unerreichbare Kardinalzahlen , 1938 .

[83]  Marius Petria An Institutional Version of Gödel's Completeness Theorem , 2007, CALCO.

[84]  Saul A. Kripke,et al.  Semantical Analysis of Intuitionistic Logic I , 1965 .

[85]  John C. Mitchell,et al.  Kripke-Style Models for Typed lambda Calculus , 1991, Ann. Pure Appl. Log..