FractVis: Visualizing Microseismic Events

We present our efforts of applying information visualization techniques to the domain of microseismic monitoring. Microseismic monitoring is a crucial process for a number of tasks related to oil and gas reservoir development, e.g., optimizing hydraulic fracturing operations and heavy-oil stimulation. Microseismic data has many challenging features including high dimensionality and uncertainty. We present a brief introduction to the domain of microseismic monitoring, and derive a set of tasks and data abstractions that can establish common ground between microseismic monitoring domain experts and visualization researchers. We then present FractVis, a prototype for visual analysis of microseismic data, describing the ongoing process of iteratively refining FractVis through close collaboration and consultation with domain experts. FractVis is designed to offer microseismic monitoring experts with visual analytic tools that allow investigation of the 3D spatial distribution of microseismic events, time-varying analysis and interactive exploration of high-dimensional parameter spaces, extensively complementing the existing tools in their disposal.

[1]  Denis Gracanin,et al.  Interactive visual analysis and exploration of injection systems simulations , 2005, VIS 05. IEEE Visualization, 2005..

[2]  Pierre Dragicevic,et al.  Rolling the Dice: Multidimensional Visual Exploration using Scatterplot Matrix Navigation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[3]  Ivan Viola,et al.  Seismic volume visualization for horizon extraction , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[4]  Ulrich Zimmer,et al.  Calculating Stimulated Reservoir Volume (SRV) with Consideration of Uncertainties in Microseismic-Event Locations , 2011 .

[5]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[6]  Shantanu H. Joshi,et al.  Query-based coordinated multiple views with Feature Similarity Space for visual analysis of MRI repositories , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[7]  D. Eaton,et al.  Interactive Sketch-based Estimation of Stimulated Volume in Unconventional Reservoirs Using Microseismic Data , 2012 .

[8]  Ruth I. Rusby The future of visualization : Vision 2020 , 2008 .

[9]  T. J. Jankun-Kelly,et al.  Guided analysis of hurricane trends using statistical processes integrated with interactive parallel coordinates , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[10]  Markus Hadwiger,et al.  Interactive seismic interpretation with piecewise global energy minimization , 2011, 2011 IEEE Pacific Visualization Symposium.

[11]  John T. Stasko,et al.  DataMeadow: A Visual Canvas for Analysis of Large-Scale Multivariate Data , 2007, 2007 IEEE Symposium on Visual Analytics Science and Technology.

[12]  H. James,et al.  Trends in visualization for E&P operations , 2006 .

[13]  Daniel Weiskopf,et al.  State of the Art of Parallel Coordinates , 2013, Eurographics.

[14]  Matthew O. Ward,et al.  Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering , 2004, IEEE Symposium on Information Visualization.

[15]  David Borland,et al.  Rainbow Color Map (Still) Considered Harmful , 2007, IEEE Computer Graphics and Applications.

[16]  Hong Zhou,et al.  Scattering Points in Parallel Coordinates , 2009, IEEE Transactions on Visualization and Computer Graphics.

[17]  Matthew O. Ward,et al.  XmdvTool: integrating multiple methods for visualizing multivariate data , 1994, Proceedings Visualization '94.

[18]  N. R. Warpinski,et al.  Microseismic Monitoring: Inside and Out , 2009 .

[19]  J.C. Roberts,et al.  State of the Art: Coordinated & Multiple Views in Exploratory Visualization , 2007, Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV 2007).

[20]  N. Andrienko,et al.  Coordinated Multiple Views: a Critical View , 2007, Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV 2007).

[21]  Tony DeRose,et al.  Toolglass and magic lenses: the see-through interface , 1993, SIGGRAPH.

[22]  Matthew O. Ward,et al.  High Dimensional Brushing for Interactive Exploration of Multivariate Data , 1995, Proceedings Visualization '95.

[23]  James R. Eagan,et al.  Low-level components of analytic activity in information visualization , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[24]  Jarke J. van Wijk,et al.  Eurographics/ieee-vgtc Symposium on Visualization 2010 Evaluation of Cluster Identification Performance for Different Pcp Variants , 2022 .

[25]  Helwig Hauser,et al.  Smooth Brushing for Focus+Context Visualization of Simulation Data in 3D , 2002, WSCG.

[26]  Li Sha,et al.  An algorithm for locating microseismic events , 2004, Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.04CH37513).

[27]  Allison Woodruff,et al.  Guidelines for using multiple views in information visualization , 2000, AVI '00.