Digital signal processor-based three-dimensional wavelet error-resilient lossless compression of high-resolution spectrometer data

Ultraspectral sounders revolutionize the way remote sensing data are collected, retrieved, and assimilated to provide better weather, climate, and environmental prediction and monitoring. This unprecedented amount of ultraspectral data increases the burden of data bandwidth and the chance of transmission noise and error contamination. It is desired that source coding of ultraspectral data also have some error-resilient capability, in addition to the error-correcting channel coding. Earlier, we developed three-dimensional wavelet reversible variable-length coding (3DWT-RVLC) for lossless compression of ultraspectral sounder data, which has significantly better error resilience than JPEG2000 Part 2 at only a small reduction in compression gain. The reversible variable-length codes allow instantaneous decoding in both directions, which affords better detection of bit errors due to synchronization losses over a noisy channel. To explore the feasibility of 3DWT-RVLC for real-time ultraspectral data processing, we implement a memory-limited digital signal processor (DSP) version of 3DWT-RVLC. Compression experiments on 10 ultraspectral test granules obtained from the NASA Atmospheric Infrared Sounder show that the memory-limited DSP-based 3DWT-RVLC is able to perform high-speed data processing at only a small reduction in compression ratio as compared to the original 3DWT-RVLC.

[1]  Sinthop Kaewpijit,et al.  Parallel and adaptive reduction of hyperspectral data to intrinsic dimensionality , 2001, Proceedings 42nd IEEE Symposium on Foundations of Computer Science.

[2]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[3]  D. Huffman A Method for the Construction of Minimum-Redundancy Codes , 1952 .

[4]  David S. Greenberg,et al.  Massively parallel computing using commodity components , 2000, Parallel Comput..

[5]  Erik Lindholm,et al.  NVIDIA Tesla: A Unified Graphics and Computing Architecture , 2008, IEEE Micro.

[6]  Bormin Huang,et al.  Lossless Compression of Ultraspectral Sounder Data , 2006, Hyperspectral Data Compression.

[7]  H. H. Aumann,et al.  AIRS, the first hyper-spectral infrared sounder for operational weather forecasting , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[8]  Bormin Huang,et al.  Comparison of linear forms of the radiative transfer equation with analytic Jacobians. , 2002, Applied optics.

[9]  Hal Bloom The Cross-Track Infrared Sounder (CrIS): A sensor for operational meterological remote sensing , 2001 .

[10]  Ja-Ling Wu,et al.  On constructing the Huffman-code-based reversible variable-length codes , 2001, IEEE Trans. Commun..

[11]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[12]  Scott Hauck,et al.  The roles of FPGAs in reprogrammable systems , 1998, Proc. IEEE.

[13]  M. Wada,et al.  Reversible variable length codes , 1995, IEEE Trans. Commun..

[14]  Alexey L. Lastovetsky,et al.  High Performance Heterogeneous Computing , 2009, Wiley series on parallel and distributed computing.

[15]  Timothy J. Schmit,et al.  Ultraspectral sounder data compression using error-detecting reversible variable-length coding , 2005, SPIE Optics + Photonics.

[16]  Antonio J. Plaza,et al.  Commodity cluster-based parallel processing of hyperspectral imagery , 2006, J. Parallel Distributed Comput..

[17]  Robert F. Rice,et al.  Some practical universal noiseless coding techniques , 1979 .

[18]  H. Bloom,et al.  The Cross-track Infrared Sounder (CrIS): a sensor for operational meteorological remote sensing , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[19]  Antonio J. Plaza,et al.  Impact of platform heterogeneity on the design of parallel algorithms for morphological processing of high-dimensional image data , 2007, The Journal of Supercomputing.

[20]  K. Itoh Massively-parallel Fourier-transform spectral imaging and hyperspectral image processing , 1993 .

[21]  A. Said Introduction to Arithmetic Coding - Theory and Practice , 2023, ArXiv.

[22]  K. Rijkse,et al.  H.263: video coding for low-bit-rate communication , 1996, IEEE Commun. Mag..

[23]  Solomon W. Golomb,et al.  Run-length encodings (Corresp.) , 1966, IEEE Trans. Inf. Theory.

[24]  R. F. Rice,et al.  Practical Universal Noiseless Coding , 1979, Optics & Photonics.

[25]  S. Golomb Run-length encodings. , 1966 .

[26]  Antonio J. Plaza,et al.  An experimental comparison of parallel algorithms for hyperspectral analysis using heterogeneous and homogeneous networks of workstations , 2008, Parallel Comput..

[27]  Wilfredo Lugo,et al.  Wilfredo Lugo A Service Oriented Architecture Grid Based Environment For Hyperspectral Imaging Analysis , 2005 .

[28]  Yongsheng Zhao,et al.  A robust framework for real-time distributed processing of satellite data , 2006, J. Parallel Distributed Comput..

[29]  William L. Smith,et al.  GIFTS - the precursor geostationary satellite component of the future Earth Observing System , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[30]  Daniel Schläpfer,et al.  Cluster versus grid for operational generation of ATCOR's modtran-based look up tables , 2008, Parallel Comput..