Poincaré Return Maps in Neural Dynamics: Three Examples

Understanding of the onset and generic mechanisms of transitions between distinct patterns of activity in realistic models of individual neurons and neural networks presents a fundamental challenge for the theory of applied dynamical systems. We use three examples of slow-fast neural systems to demonstrate a suite of new computational tools to study diverse neuronal systems.

[1]  Brian J. Norris,et al.  Coping with variability in small neuronal networks. , 2011, Integrative and comparative biology.

[2]  Andrey Shilnikov,et al.  Origin of bursting through homoclinic spike adding in a neuron model. , 2007, Physical review letters.

[3]  Kiyotoshi Matsuoka,et al.  Mechanisms of frequency and pattern control in the neural rhythm generators , 1987, Biological Cybernetics.

[4]  E. Marder Neuromodulation of Neuronal Circuits: Back to the Future , 2012, Neuron.

[5]  Thierry Bal,et al.  The pyloric central pattern generator in Crustacea: a set of conditional neuronal oscillators , 1988, Journal of Comparative Physiology A.

[6]  Andrey Shilnikov,et al.  Origin of Chaos in a Two-Dimensional Map Modeling Spiking-bursting Neural Activity , 2003, Int. J. Bifurc. Chaos.

[7]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[8]  Eve Marder,et al.  Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. , 2003, Journal of neurophysiology.

[9]  Andrey Shilnikov,et al.  Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. , 2005, Physical review letters.

[10]  Andrey Shilnikov,et al.  When weak inhibition synchronizes strongly desynchronizing networks of bursting neurons. , 2008, Physical review letters.

[11]  Mark Pernarowski,et al.  Return Map Characterizations for a Model of Bursting with Two Slow Variables , 2006, SIAM J. Appl. Math..

[12]  Jan-Marino Ramirez,et al.  Network reconfiguration and neuronal plasticity in rhythm-generating networks. , 2011, Integrative and comparative biology.

[13]  Alexander B. Neiman,et al.  Variability of bursting patterns in a neuron model in the presence of noise , 2009, Journal of Computational Neuroscience.

[14]  Kevin L. Briggman,et al.  Multifunctional pattern-generating circuits. , 2008, Annual review of neuroscience.

[15]  Eve Marder,et al.  Invertebrate Neurobiology: Polymorphic neural networks , 1994, Current Biology.

[16]  Robert J Calin-Jageman,et al.  Parameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in Tritonia. , 2007, Journal of neurophysiology.

[17]  Andrey Shilnikov,et al.  Voltage interval mappings for activity transitions in neuron models for elliptic bursters , 2011 .

[18]  Andrey Shilnikov,et al.  Polyrhythmic synchronization in bursting networking motifs. , 2008, Chaos.

[19]  E. Schwartz Methods in Neuronal Modelling. From Synapses to Networks edited by Christof Koch and Idan Segev, MIT Press, 1989. £40.50 (xii + 524 pages) ISBN 0 262 11133 0 , 1990, Trends in Neurosciences.

[20]  Nancy Kopell,et al.  Rapid synchronization through fast threshold modulation , 1993, Biological Cybernetics.

[21]  R. Clewley,et al.  Key Bifurcations of Bursting Polyrhythms in 3-Cell Central Pattern Generators , 2013, PloS one.

[22]  Nikolai F. Rulkov,et al.  Subthreshold oscillations in a map-based neuron model , 2004, q-bio/0406007.

[23]  Andrey Shilnikov,et al.  Applications of the Poincaré mapping technique to analysis of neuronal dynamics , 2007, Neurocomputing.

[24]  Paul S. Katz,et al.  Homology and homoplasy of swimming behaviors and neural circuits in the Nudipleura (Mollusca, Gastropoda, Opisthobranchia) , 2012, Proceedings of the National Academy of Sciences.

[25]  Christopher K. R. T. Jones,et al.  Tracking invariant manifolds with di erential forms in singularly per-turbed systems , 1994 .

[26]  W. O. Friesen,et al.  Neuronal control of leech behavior , 2005, Progress in Neurobiology.

[27]  Andrey Shilnikov,et al.  Order parameter for bursting polyrhythms in multifunctional central pattern generators. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Teresa Ree Chay,et al.  Chaos in a three-variable model of an excitable cell , 1985 .

[29]  J. Rinzel,et al.  Oscillatory and bursting properties of neurons , 1998 .

[30]  E. Marder,et al.  Principles of rhythmic motor pattern generation. , 1996, Physiological reviews.

[31]  A. Shilnikov,et al.  Qualitative and quantitative stability analysis of penta-rhythmic circuits , 2015, 1509.04514.

[32]  L. Chua,et al.  Methods of qualitative theory in nonlinear dynamics , 1998 .

[33]  W. Kristan Neuronal Decision-Making Circuits , 2008, Current Biology.

[34]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[35]  B. Ermentrout,et al.  Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Andrey Shilnikov,et al.  Toward robust phase-locking in Melibe swim central pattern generator models. , 2013, Chaos.

[37]  Andrey Shilnikov,et al.  Mechanism of bistability: tonic spiking and bursting in a neuron model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  G. Ermentrout,et al.  Analysis of neural excitability and oscillations , 1989 .

[39]  D. A. Baxter,et al.  Multiple modes of activity in a model neuron suggest a novel mechanism for the effects of neuromodulators. , 1994, Journal of neurophysiology.

[40]  J. Davenport Editor , 1960 .

[41]  Andrey Shilnikov,et al.  On bifurcations of the Lorenz attractor in the Shimizu-Morioka model , 1993 .

[42]  John Guckenheimer,et al.  Synaptic patterning of left-right alternation in a computational model of the rodent hindlimb central pattern generator , 2011, Journal of Computational Neuroscience.

[43]  John W. Clark,et al.  A mathematical criterion based on phase response curves for stability in a ring of coupled oscillators , 1999, Biological Cybernetics.

[44]  John Rinzel,et al.  Bursting oscillations in an excitable membrane model , 1985 .

[45]  R. Bertram,et al.  Topological and phenomenological classification of bursting oscillations. , 1995, Bulletin of mathematical biology.