Novel viewing zone control method for computer-generated integral 3-D imaging

We propose a novel algorithm to maximize the viewing zone of integral 3-D imaging (II) display. In our algorithm, the elemental image array consists of two kinds of elemental images whose numbers of sub-pixels are N and (N+1). The pitch of exit pupils was set to be N times the width of the sub-pixel and an average width of elemental images was designed to exceed the pitch of the exit pupils to a small extent by distributing the elemental images consisting of (N+1) sub-pixels. Under this condition, all light rays generated from elemental images can be introduced to the viewing zone width (viewing width) on the viewing line at the distance L without converging points of light rays at around L. This algorithm was applied to one-dimensional II system with 32 parallax light rays using a 20.8”-QUXGA-LCD (192 ppi) equipped with a lenticular sheet. Then, the viewing width at 1.5 m was expanded to 500 mm, a value almost five times larger than the width of a conventional display system. Even if hardware configurations are fixed, our algorithm enables a viewing zone to be the maximum at a certain L.