Motion-motif graphs

We present a technique to automatically distill a motion-motif graph from an arbitrary collection of motion capture data. Motion motifs represent clusters of similar motions and together with their encompassing motion graph they lend understandable structure to the contents and connectivity of large motion datasets. They can be used in support of motion compression, the removal of redundant motions, and the creation of blend spaces. This paper develops a string-based motif-finding algorithm which allows for a user-controlled compromise between motif length and the number of motions in a motif. It allows for time warps within motifs and assigns the majority of the input data to relevant motifs. Results are demonstrated for large datasets (more than 100,000 frames) with computation times of tens of minutes.

[1]  James M. Rehg,et al.  A data-driven approach to quantifying natural human motion , 2005, SIGGRAPH '05.

[2]  Sharat Chandran,et al.  Search and transitioning for motion captured sequences , 2005, VRST '05.

[3]  Lucas Kovar,et al.  Motion graphs , 2002, SIGGRAPH '08.

[4]  James M. Rehg,et al.  A data-driven approach to quantifying natural human motion , 2005, ACM Trans. Graph..

[5]  Aaron Hertzmann,et al.  Style machines , 2000, SIGGRAPH 2000.

[6]  Eamonn J. Keogh,et al.  Probabilistic discovery of time series motifs , 2003, KDD '03.

[7]  Irfan A. Essa,et al.  Detecting Subdimensional Motifs: An Efficient Algorithm for Generalized Multivariate Pattern Discovery , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[8]  Adrian Hilton,et al.  Realistic synthesis of novel human movements from a database of motion capture examples , 2000, Proceedings Workshop on Human Motion.

[9]  George Baciu,et al.  Entropy-based motion extraction for motion capture animation: Motion Capture and Retrieval , 2005 .

[10]  Lucas Kovar,et al.  Automated extraction and parameterization of motions in large data sets , 2004, ACM Trans. Graph..

[11]  Guodong Liu,et al.  Segment-based human motion compression , 2006, SCA '06.

[12]  Eamonn J. Keogh,et al.  A symbolic representation of time series, with implications for streaming algorithms , 2003, DMKD '03.

[13]  Eamonn J. Keogh,et al.  Detecting time series motifs under uniform scaling , 2007, KDD '07.

[14]  Vladimir Pavlovic,et al.  Learning Switching Linear Models of Human Motion , 2000, NIPS.

[15]  Ying Wu,et al.  Mining Motifs from Human Motion , 2008, Eurographics.

[16]  Michael Gleicher,et al.  Parametric motion graphs , 2007, SI3D.

[17]  Marc Jaeger,et al.  Virtual Reality Continuum And Its Applications , 2008 .

[18]  George Baciu,et al.  Entropy‐based motion extraction for motion capture animation , 2005, Comput. Animat. Virtual Worlds.

[19]  Tido Röder,et al.  Efficient content-based retrieval of motion capture data , 2005, SIGGRAPH 2005.

[20]  Michael Gleicher,et al.  Automated extraction and parameterization of motions in large data sets , 2004, SIGGRAPH 2004.

[21]  Lucas Kovar,et al.  Motion graphs , 2002, SIGGRAPH Classes.

[22]  Harry Shum,et al.  Motion texture: a two-level statistical model for character motion synthesis , 2002, ACM Trans. Graph..

[23]  Meinard Müller,et al.  Efficient content-based retrieval of motion capture data , 2005, SIGGRAPH '05.

[24]  Tim Oates,et al.  PERUSE: An unsupervised algorithm for finding recurring patterns in time series , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[25]  Sung Yong Shin,et al.  On‐line motion blending for real‐time locomotion generation , 2004, Comput. Animat. Virtual Worlds.

[26]  Hyun Joon Shin,et al.  Fat graphs: constructing an interactive character with continuous controls , 2006, SCA '06.

[27]  Dimitrios Gunopulos,et al.  Indexing Large Human-Motion Databases , 2004, VLDB.

[28]  Meinard Müller,et al.  Motion templates for automatic classification and retrieval of motion capture data , 2006, SCA '06.

[29]  George Baciu,et al.  Hypercube sweeping algorithm for subsequence motion matching in large motion databases , 2006, VRCIA '06.

[30]  Irfan A. Essa,et al.  Improving Activity Discovery with Automatic Neighborhood Estimation , 2007, IJCAI.

[31]  Jessica K. Hodgins,et al.  Interactive control of avatars animated with human motion data , 2002, SIGGRAPH.

[32]  Taesoo Kwon,et al.  Motion modeling for on-line locomotion synthesis , 2005, SCA '05.

[33]  Irfan A. Essa,et al.  Discovering Multivariate Motifs using Subsequence Density Estimation and Greedy Mixture Learning , 2007, AAAI.

[34]  Maja J. Mataric,et al.  Automated Derivation of Primitives for Movement Classification , 2000, Auton. Robots.

[35]  Charles Elkan,et al.  Fitting a Mixture Model By Expectation Maximization To Discover Motifs In Biopolymer , 1994, ISMB.

[36]  Ryo Kurazume,et al.  Construction of Symbolic Representation from Human Motion Information , 2006, KES.

[37]  Paul Lukowicz,et al.  Performance Metrics and Evaluation Issues for Continuous Activity Recognition , 2006 .

[38]  Daniel Thalmann,et al.  Computer Animation , 1990, Computer Science Workbench.

[39]  Philippe Beaudoin Compression de donnees d'animation acquises par capture de mouvements , 2008 .

[40]  Okan Arikan,et al.  Interactive motion generation from examples , 2002, ACM Trans. Graph..

[41]  Jernej Barbic,et al.  Segmenting Motion Capture Data into Distinct Behaviors , 2004, Graphics Interface.

[42]  Kuniaki Uehara,et al.  Discovery of Time-Series Motif from Multi-Dimensional Data Based on MDL Principle , 2005, Machine Learning.

[43]  Eugene Fiume,et al.  An efficient search algorithm for motion data using weighted PCA , 2005, SCA '05.

[44]  Wei Wang,et al.  A system for analyzing and indexing human-motion databases , 2005, SIGMOD '05.