Online nonparametric discriminant analysis for incremental subspace learning and recognition

This paper presents a novel approach for online subspace learning based on an incremental version of the nonparametric discriminant analysis (NDA). For many real-world applications (like the study of visual processes, for instance) it is impossible to know beforehand the number of total classes or the exact number of instances per class. This motivated us to propose a new algorithm, in which new samples can be added asynchronously, at different time stamps, as soon as they become available. The proposed technique for NDA-eigenspace representation has been used in pattern recognition applications, where classification of data has been performed based on the nearest neighbor rule. Extensive experiments have been carried out both in terms of classification accuracy and execution time. On the one hand, the results show that the Incremental NDA converges towards the classical NDA at the end of the learning process and furthermore. On the other hand, Incremental NDA is suitable to update a large knowledge representation eigenspace in real-time. Finally, the use of our method on a real-world application is presented.

[1]  J. Weng Cresceptron and Shoslif: toward Comprehensive Visual Learning 1 , 1996 .

[2]  Juyang Weng,et al.  Candid Covariance-Free Incremental Principal Component Analysis , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Dahua Lin,et al.  Nonparametric subspace analysis for face recognition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[4]  Ales Leonardis,et al.  Incremental PCA for on-line visual learning and recognition , 2002, Object recognition supported by user interaction for service robots.

[5]  Rama Chellappa,et al.  Multiple-exemplar discriminant analysis for face recognition , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[6]  D. B. Graham,et al.  Characterising Virtual Eigensignatures for General Purpose Face Recognition , 1998 .

[7]  B. S. Manjunath,et al.  An Eigenspace Update Algorithm for Image Analysis , 1997, CVGIP Graph. Model. Image Process..

[8]  Anastasios Tefas,et al.  Frontal face authentication using morphological elastic graph matching , 2000, IEEE Trans. Image Process..

[9]  D. B. Gerham Characterizing virtual eigensignatures for general purpose face recognition , 1998 .

[10]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[11]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Erkki Oja,et al.  Subspace methods of pattern recognition , 1983 .

[13]  Sanja Fidler,et al.  Combining reconstructive and discriminative subspace methods for robust classification and regression by subsampling , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  A. Martínez,et al.  The AR face databasae , 1998 .

[15]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[16]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[17]  Ralph R. Martin,et al.  Incremental Eigenanalysis for Classification , 1998, BMVC.

[18]  Shaoning Pang,et al.  Chunk Incremental LDA Computing on Data Streams , 2005, ISNN.

[19]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[20]  David G. Stork,et al.  Pattern Classification , 1973 .

[21]  Avinash C. Kak,et al.  PCA versus LDA , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Horst Bischof,et al.  Why to Combine Reconstructive and Discriminative Information for Incremental Subspace Learning , 2006 .

[23]  M. Bressan,et al.  Nonparametric discriminant analysis and nearest neighbor classification , 2003, Pattern Recognit. Lett..

[24]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[25]  David Masip,et al.  Boosted Linear Projections for Discriminant Analysis , 2004 .

[26]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[27]  Rama Chellappa,et al.  Discriminant Analysis for Recognition of Human Face Images (Invited Paper) , 1997, AVBPA.

[28]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[29]  R. Fisher THE STATISTICAL UTILIZATION OF MULTIPLE MEASUREMENTS , 1938 .

[30]  Aleix M. Martinez,et al.  The AR face database , 1998 .