Global soil organic carbon stock projection uncertainties relevant to sensitivity of global mean temperature and precipitation changes

Introduction Conclusions References

[1]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[2]  F. Piontek,et al.  The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework , 2013, Proceedings of the National Academy of Sciences.

[3]  F. Piontek,et al.  A trend-preserving bias correction – the ISI-MIP approach , 2013 .

[4]  Wolfgang Lucht,et al.  Contribution of permafrost soils to the global carbon budget , 2013 .

[5]  W. Post,et al.  Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses. , 2013, Ecological applications : a publication of the Ecological Society of America.

[6]  Leo Posthuma,et al.  Ecosystem services: a useful concept for soil policy making! , 2012 .

[7]  J. Randerson,et al.  Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations , 2012 .

[8]  Andrew J. Weaver,et al.  Significant contribution to climate warming from the permafrost carbon feedback , 2012 .

[9]  C. Jones,et al.  Uncertainties in the global temperature change caused by carbon release from permafrost thawing , 2012 .

[10]  Susan E. Trumbore,et al.  Models of soil organic matter decomposition: the SoilR package, version 1.0 , 2012 .

[11]  Motoko Inatomi,et al.  Water-Use Efficiency of the Terrestrial Biosphere: A Model Analysis Focusing on Interactions between the Global Carbon and Water Cycles , 2012 .

[12]  S. Seneviratne,et al.  Impact of soil map specifications for European climate simulations , 2012, Climate Dynamics.

[13]  Francesca M. Hopkins,et al.  A framework for representing microbial decomposition in coupled climate models , 2012, Biogeochemistry.

[14]  M. G. Ryan,et al.  Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward , 2011 .

[15]  C. Jones,et al.  Direct soil moisture controls of future global soil carbon changes: An important source of uncertainty , 2011 .

[16]  P. Cox,et al.  The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics , 2011 .

[17]  P. Ciais,et al.  Permafrost carbon-climate feedbacks accelerate global warming , 2011, Proceedings of the National Academy of Sciences.

[18]  T. Vesala,et al.  Soil carbon model alternatives for ECHAM5/JSBACH climate model: Evaluation and impacts on global carbon cycle estimates , 2011 .

[19]  P. Cox,et al.  Soil carbon and climate change: from the Jenkinson effect to the compost‐bomb instability , 2011 .

[20]  Roland Hiederer,et al.  Global Soil Organic Carbon Estimates and the Harmonized World Soil Database , 2011 .

[21]  Mark A. Bradford,et al.  Soil-carbon response to warming dependent on microbial physiology , 2010 .

[22]  R. Lal Beyond Copenhagen: mitigating climate change and achieving food security through soil carbon sequestration , 2010, Food Security.

[23]  Philip Smith,et al.  Historical and future perspectives of global soil carbon response to climate and land-use changes , 2010 .

[24]  P. Shi,et al.  Global pattern of temperature sensitivity of soil heterotrophic respiration (Q10) and its implications for carbon‐climate feedback , 2009 .

[25]  J. Canadell,et al.  Soil organic carbon pools in the northern circumpolar permafrost region , 2009 .

[26]  T. E. Osterkamp,et al.  The effect of permafrost thaw on old carbon release and net carbon exchange from tundra , 2009, Nature.

[27]  Darren T. Drewry,et al.  The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing t , 2012 .

[28]  S. Wofsy,et al.  High sensitivity of peat decomposition to climate change through water-table feedback , 2008 .

[29]  I. C. Prentice,et al.  Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs) , 2008 .

[30]  S. Hagemann,et al.  Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle , 2008 .

[31]  M. Heimann,et al.  Terrestrial ecosystem carbon dynamics and climate feedbacks , 2008, Nature.

[32]  Vulnerability of permafrost carbon to global warming. Part I: model description and role of heat generated by organic matter decomposition , 2008 .

[33]  Holly K. Gibbs,et al.  New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000 , 2008 .

[34]  C. Schmullius,et al.  Effects of soil freezing and thawing on vegetation carbon density in Siberia: A modeling analysis with the Lund‐Potsdam‐Jena Dynamic Global Vegetation Model (LPJ‐DGVM) , 2007 .

[35]  Johan Six,et al.  Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta‐analysis , 2006 .

[36]  S. Seneviratne,et al.  Land–atmosphere coupling and climate change in Europe , 2006, Nature.

[37]  Takeshi Ise,et al.  The global-scale temperature and moisture dependencies of soil organic carbon decomposition: an analysis using a mechanistic decomposition model , 2006 .

[38]  E. Davidson,et al.  Temperature sensitivity of soil carbon decomposition and feedbacks to climate change , 2006, Nature.

[39]  Martial Bernoux,et al.  Soil Carbon Sequestration , 2006 .

[40]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[41]  I. C. Prentice,et al.  A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system , 2005 .

[42]  P. Cox,et al.  Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil , 2005 .

[43]  R. Lal,et al.  Soil Carbon Sequestration Impacts on Global Climate Change and Food Security , 2004, Science.

[44]  J. Raich Interannual Variability in Global Soil Respiration on a 0.5 Degree Grid Cell Basis (1980-1994) , 2003 .

[45]  Akihiko Ito,et al.  A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE) : A description based on dry-matter production theory and plot-scale validation , 2002 .

[46]  Andrew White,et al.  Evaluation and analysis of a dynamic terrestrial ecosystem model under preindustrial conditions at the global scale , 2000 .

[47]  C. Sims,et al.  Bayesian methods for dynamic multivariate models , 1998 .

[48]  P. Vitousek,et al.  Mineral control of soil organic carbon storage and turnover , 1997, Nature.

[49]  Thomas M. Smith,et al.  A global land primary productivity and phytogeography model , 1995 .

[50]  R. Wershaw MODEL FOR HUMUS IN SOILS AND SEDIMENTS , 1993 .

[51]  W. Schlesinger,et al.  The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate , 1992 .

[52]  P. B. Tinker,et al.  Soil science in a changing world , 1985 .

[53]  Wilfred M. Post,et al.  Soil carbon pools and world life zones , 1982, Nature.

[54]  S S I T C H,et al.  Evaluation of Ecosystem Dynamics, Plant Geography and Terrestrial Carbon Cycling in the Lpj Dynamic Global Vegetation Model , 2022 .