Multi-wavelength arbitrary waveform generation through spectro-temporal unitary transformations.

Temporal waveform manipulation is a fundamental functionality in optics and crucial for applications like optical communications, microwave photonics and quantum optics. Traditional IQ- or phase-amplitude modulators shape light by carving energy from the input lightwave and are thus fundamentally lossy, and cannot apply independent modulation to multiple input wavelengths simultaneously. Taking inspiration from the space-time duality, we produce arbitrary unitary spectro-temporal transformations on multiple temporal input vectors with a modulation structure comprising of only lossless phase modulation and dispersive allpass filtering. The bandwidth of the output waveforms is not restricted by the driving electronics and independent transformations can be performed simultaneously on multiple orthogonal inputs such as spectrally separated frequency tones. This overcomes the main limitations of traditional electro-optic modulators and offers fundamental new insight into temporal wave manipulation.

[1]  B. Kolner Space-time duality and the theory of temporal imaging , 1994 .

[2]  Mikael Mazur,et al.  Optical Arbitrary Waveform Generator Based on Time-Domain Multiplane Light Conversion , 2019, 2019 Optical Fiber Communications Conference and Exhibition (OFC).

[3]  F. Diederich,et al.  All-optical high-speed signal processing with silicon–organic hybrid slot waveguides , 2009 .

[4]  Miles H. Anderson,et al.  Microresonator-based solitons for massively parallel coherent optical communications , 2016, Nature.

[5]  F. Kschischang,et al.  Roadmap of optical communications , 2015, 1507.05157.

[6]  Linjie Zhou,et al.  Real-time full-field arbitrary optical waveform measurement , 2010 .

[7]  Oliver King,et al.  An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator , 2019, IEEE Photonics Technology Letters.

[8]  L. Oxenløwe,et al.  OTDM-to-WDM Conversion Based on Time-to-Frequency Mapping by Time-Domain Optical Fourier Transformation , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  Reza Salem,et al.  Silicon-chip-based ultrafast optical oscilloscope , 2008, Nature.

[10]  Wolfgang Porod,et al.  Roadmap on all-optical processing , 2019, Journal of Optics.

[11]  T. Jannson,et al.  Temporal self-imaging effect in single-mode fibers , 1981 .

[12]  P. Winzer,et al.  Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages , 2018, Nature.

[13]  Michal Lipson,et al.  High-speed optical sampling using a silicon-chip temporal magnifier. , 2009, Optics express.

[14]  Ari T. Friberg,et al.  Ghost imaging in the time domain , 2016, Nature Photonics.

[15]  Alexander L. Gaeta,et al.  Demonstration of Temporal Cloaking , 2011 .

[16]  S. Daumont,et al.  Root-Raised Cosine filter influences on PAPR distribution of single carrier signals , 2008, 2008 3rd International Symposium on Communications, Control and Signal Processing.

[17]  M. Lauermann,et al.  Extended C-Band Tunable Multi-Channel InP-Based Coherent Transmitter PICs , 2017, Journal of Lightwave Technology.

[18]  Ezra Ip,et al.  Optical Coherent Detection and Digital Signal Processing of Channel Impairments , 2019, Handbook of Optical Fibers.

[19]  Joseph M. Lukens,et al.  A temporal cloak at telecommunication data rate , 2013, Nature.

[20]  Reza Salem,et al.  Application of space–time duality to ultrahigh-speed optical signal processing , 2013 .

[21]  Joseph M. Lukens,et al.  Frequency-encoded photonic qubits for scalable quantum information processing , 2016, 1612.03131.

[22]  David Hillerkuss,et al.  All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale , 2015, Nature Photonics.

[23]  D. Neilson,et al.  Laguerre-Gaussian mode sorter , 2018, Nature Communications.

[24]  Haoshuo Chen,et al.  Design of High Order Mode-Multiplexers using Multiplane Light Conversion , 2017, 2017 European Conference on Optical Communication (ECOC).

[25]  J. Kahn,et al.  Feedforward Carrier Recovery for Coherent Optical Communications , 2007, Journal of Lightwave Technology.

[26]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[27]  Pu Jian,et al.  Programmable unitary spatial mode manipulation. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[29]  José Capmany,et al.  Integrated microwave photonics , 2019, Nature Photonics.

[30]  Brian J. Smith,et al.  Programmable unitary transformation of spectro-temporal modes , 2017 .

[31]  T. Hashimoto,et al.  New Optical Waveguide Design Based on Wavefront Matching Method , 2007, Journal of Lightwave Technology.

[32]  J P Heritage,et al.  32 Phase X 32 amplitude optical arbitrary waveform generation. , 2007, Optics letters.