Fusion of twisted representations

The comultiplication formula for fusion products of untwisted representations of the chiral algebra is generalized to include arbitrary twisted representations. We show that the formulae define a tensor product with suitable properties, and determine the analogue of Zhu's algebra for arbitrary twisted representations. As an example we study the fusion of representations of the Ramond sector of the N = 1 and N = 2 superconformal algebra. In the latter case, certain subtleties arise which we describe in detail.

[1]  C. Dong,et al.  Twisted representations of vertex operator algebras , 1995, q-alg/9509005.

[2]  W. Eholzer,et al.  Unitarity of rationalN = 2 superconformal theories , 1996, hep-th/9601163.

[3]  M. Gaberdiel,et al.  A rational logarithmic conformal field theory , 1996, hep-th/9606050.

[4]  M. Gaberdiel,et al.  INDECOMPOSABLE FUSION PRODUCTS , 1996, hep-th/9604026.

[5]  Matthias Dörrzapf Analytic expressions for singular vectors of theN=2 superconformal algebra , 1996, hep-th/9601056.

[6]  W. Nahm Quasi-rational fusion products , 1994, hep-th/9402039.

[7]  M. Gaberdiel Fusion rules of chiral algebras , 1993, hep-th/9309105.

[8]  M. Gaberdiel FUSION IN CONFORMAL FIELD THEORY AS THE TENSOR PRODUCT OF THE SYMMETRY ALGEBRA , 1993, hep-th/9307183.

[9]  V. Kac,et al.  Vertex Operator Superalgebras and Their Representations , 1993, hep-th/9312065.

[10]  J. Lepowsky,et al.  A theory of tensor products for module categories for a vertex operator algebra, I , 1993, hep-th/9309076.

[11]  G. Watts Null vectors of the superconformal algebra: The Ramond sector , 1993, hep-th/9306034.

[12]  V. Gurarie Logarithmic operators in conformal field theory , 1993, hep-th/9303160.

[13]  S. Odake c=3d CONFORMAL ALGEBRA WITH EXTENDED SUPERSYMMETRY , 1990 .

[14]  Yongchang Zhu Vertex operator algebras, elliptic functions and modular forms , 1990 .

[15]  G. Mussardo,et al.  Fusion rules, four-point functions and discrete symmetries of N = 2 superconformal models , 1989 .

[16]  G. Mussardo,et al.  N=2 SUPERCONFORMAL MINIMAL MODELS , 1989 .

[17]  E. Kiritsis,et al.  Structure of N=2 superconformally invariant unitary "minimal" theories: Operator algebra and correlation functions. , 1987, Physical review. D, Particles and fields.

[18]  Nathan Seiberg,et al.  Comments on the N = 2,3,4 superconformal algebras in two dimensions , 1987 .

[19]  G. Sotkov,et al.  N=1 superconformal operator product expansions and superfield fusion rules , 1986 .

[20]  A. Kent,et al.  Determinant Formulae and Unitarity for the N=2 Superconformal Algebras in Two-Dimensions or Exact Results on String Compactification , 1986 .

[21]  S. Shenker,et al.  Superconformal invariance in two dimensions and the tricritical Ising model , 1985 .

[22]  H. Eichenherr Minimal operator algebras in superconformal quantum field theory , 1985 .