Arriving on Time
暂无分享,去创建一个
R. Kalaba | Y. Fan | J. E. Moore | Yueyue Fan | J. Moore | Y. Y. Fan
[1] Richard Bellman,et al. ON A ROUTING PROBLEM , 1958 .
[2] R. Bellman,et al. A NUMERICAL INVERSION OF THE LAPLACE TRANSFORM , 1963 .
[3] Robert E. Kalaba,et al. Dynamic Programming and Modern Control Theory , 1966 .
[4] H. Frank,et al. Shortest Paths in Probabilistic Graphs , 1969, Oper. Res..
[5] Stuart E. Dreyfus,et al. An Appraisal of Some Shortest-Path Algorithms , 1969, Oper. Res..
[6] Ronald A. Howard,et al. Dynamic Probabilistic Systems , 1971 .
[7] James J. Solberg,et al. The Stochastic Shortest Route Problem , 1980, Oper. Res..
[8] Ronald Prescott Loui,et al. Optimal paths in graphs with stochastic or multidimensional weights , 1983, Commun. ACM.
[9] Randolph W. Hall,et al. The Fastest Path through a Network with Random Time-Dependent Travel Times , 1986, Transp. Sci..
[10] Hari M. Srivastava,et al. Theory and Applications of Convolution Integral Equations , 1992 .
[11] D. White. Minimizing a Threshold Probability in Discounted Markov Decision Processes , 1993 .
[12] L. B. Fu,et al. Expected Shortest Paths in Dynamic and Stochastic Traf c Networks , 1998 .
[13] Congbin Wu,et al. Minimizing risk models in Markov decision processes with policies depending on target values , 1999 .
[14] Hani S. Mahmassani,et al. Least Expected Time Paths in Stochastic, Time-Varying Transportation Networks , 1999, Transp. Sci..
[15] S. Travis Waller,et al. On the online shortest path problem with limited arc cost dependencies , 2002, Networks.
[16] Robert E. Kalaba,et al. Dynamic programming and pseudo-inverses , 2003, Appl. Math. Comput..