An Integrated Open-Cavity System for Magnetic Bead Manipulation

Superparamagnetic beads are increasingly used in biomedical assays to manipulate, transport, and maneuver biomaterials. We present a low-cost integrated system designed in bulk CMOS to manipulate and separate biomedical magnetic beads. The system consists of 8 × 8 coil-arrays suitable for single bead manipulation, or collaborative multi-bead manipulation, using pseudo-parallel executions. We demonstrate the flexibility of the design in terms of different coil sizes, DC current levels, and layout techniques. In one array module example, the size of a single coil is 30 μm × 30 μm and the full array occupies an area of 248 μm × 248 μm in 0.5 μm CMOS technology. The programmable DC current source supports 8 discrete levels up to 1.5 mA. The total power consumption of the entire module is 9 mW when running at full power.

[1]  Yong Liu,et al.  Integrated cell manipulation system--CMOS/microfluidic hybrid. , 2007, Lab on a chip.

[2]  R. Wirix-Speetjens,et al.  A force study of on-chip magnetic particle transport based on tapered conductors , 2005, IEEE Transactions on Magnetics.

[3]  Liesbet Lagae,et al.  Cell manipulation with magnetic particles toward microfluidic cytometry , 2009 .

[4]  Zhipeng Zhang,et al.  Actively Controlled Manipulation of a Magnetic Microbead Using Quadrupole Magnetic Tweezers , 2010, IEEE Transactions on Robotics.

[5]  C. Radke,et al.  Double layer interactions between charge-regulated colloidal surfaces: pair potentials for spherical particles bearing ionogenic surface groups , 1993 .

[6]  J. Tuszynski,et al.  Molecular and Cellular Biophysics , 2005 .

[7]  Amar Rida,et al.  Long-range transport of magnetic microbeads using simple planar coils placed in a uniform magnetostatic field , 2003 .

[8]  Hubert Kaeslin,et al.  Digital Integrated Circuit Design: From VLSI Architectures to CMOS Fabrication , 2008 .

[9]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[10]  A. Khademhosseini,et al.  Microscale technologies for tissue engineering and biology. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Martin A. M. Gijs,et al.  Microparticle photometry in a CMOS microsystem combining magnetic actuation and in situ optical detection , 2008 .

[12]  M. Chaudhury,et al.  Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems , 1988 .

[13]  C. Seeton Viscosity–temperature correlation for liquids , 2006 .

[14]  Yong Liu,et al.  IC/microfluidic hybrid system for magnetic manipulation of biological cells , 2006, IEEE Journal of Solid-State Circuits.

[15]  David G. Grier,et al.  The charge of glass and silica surfaces , 2001 .

[16]  E. Verwey,et al.  Theory of the stability of lyophobic colloids : the interaction of sol particles having and electric double l layer , 1948 .

[17]  Aaron T. Ohta,et al.  Optoelectronic Tweezers as a Tool for Parallel Single-Cell Manipulation and Stimulation , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[18]  Hakho Lee,et al.  Micromanipulation of biological systems with microelectromagnets , 2004, IEEE Transactions on Magnetics.

[19]  V. Adrian Parsegian,et al.  Van Der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists , 2005 .

[20]  B. Derjaguin,et al.  Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes , 1993 .

[21]  M. Gijs,et al.  On-chip immuno-agglutination assay with analyte capture by dynamic manipulation of superparamagnetic beads. , 2009, Lab on a chip.

[22]  Louis Néel,et al.  Théorie du traînage magnétique de diffusion , 1952 .

[23]  J. Gregory,et al.  Approximate expressions for retarded van der waals interaction , 1981 .

[24]  Colin K. Choi,et al.  Engineered materials and the cellular microenvironment: a strengthening interface between cell biology and bioengineering. , 2010, Trends in cell biology.

[26]  T. Abu-Nimeh Faisal,et al.  Integrated magnetic array for bio-object sensing and manipulation , 2010, BioCAS 2010.

[27]  Martin A M Gijs,et al.  Microfluidic applications of magnetic particles for biological analysis and catalysis. , 2010, Chemical reviews.

[28]  Optimization of spin-valve parameters for magnetic bead trapping and manipulation † † Contribution of the National Institute of Standards and Technology, not subject to copyright. , 2010 .

[29]  Q. Pankhurst,et al.  Applications of magnetic nanoparticles in biomedicine , 2003 .

[30]  S. Chander,et al.  The potential energy of interaction between dissimilar electrical double layers , 1973 .

[31]  R. Tilley Understanding Solids; The Science of Materials , 2004 .

[32]  D. ben-Avraham Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists , 2006 .

[33]  Rong Zheng,et al.  Flow Analysis of Injection Molds , 1995 .