A note on unique solvability of the absolute value equation

In this note, we show that the singular value condition $$\sigma _{\max }(B) < \sigma _{\min }(A)$$ σ max ( B ) < σ min ( A ) leads to the unique solvability of the absolute value equation $$Ax + B|x| = b$$ A x + B | x | = b for any b . This result is superior to those appeared in previously published works by Rohn (Optim Lett 3:603–606, 2009).

[1]  Cui-Xia Li,et al.  A Preconditioned AOR Iterative Method for the Absolute Value Equations , 2017 .

[2]  Cui-Xia Li,et al.  Weaker convergent results of the generalized Newton method for the generalized absolute value equations , 2018, J. Comput. Appl. Math..

[3]  Davod Khojasteh Salkuyeh,et al.  The Picard–HSS iteration method for absolute value equations , 2014, Optim. Lett..

[4]  Jiri Rohn,et al.  An iterative method for solving absolute value equations and sufficient conditions for unique solvability , 2014, Optim. Lett..

[5]  Jiri Rohn,et al.  An algorithm for solving the absolute value equation , 2009 .

[6]  O. Mangasarian,et al.  Absolute value equations , 2006 .

[7]  Jian-Jun Zhang The relaxed nonlinear PHSS-like iteration method for absolute value equations , 2015, Appl. Math. Comput..

[8]  Jiri Rohn,et al.  A theorem of the alternatives for the equation |Ax| − |B||x| = b , 2004, Optimization Letters.

[9]  Olvi L. Mangasarian,et al.  A generalized Newton method for absolute value equations , 2009, Optim. Lett..

[10]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[11]  Cui-Xia Li,et al.  The unique solution of the absolute value equations , 2018, Appl. Math. Lett..

[12]  Asif Iqbal,et al.  Levenberg-Marquardt method for solving systems of absolute value equations , 2015, J. Comput. Appl. Math..

[13]  Olvi L. Mangasarian,et al.  Absolute value equation solution via concave minimization , 2006, Optim. Lett..

[14]  An Wang,et al.  Modified Newton-Type Iteration Methods for Generalized Absolute Value Equations , 2018, J. Optim. Theory Appl..

[15]  Peng Guo,et al.  On the Unique Solvability of the Absolute Value Equation , 2015, Journal of Optimization Theory and Applications.

[16]  Jiri Rohn On unique solvability of the absolute value equation , 2009, Optim. Lett..

[17]  Chao Zhang,et al.  Global and Finite Convergence of a Generalized Newton Method for Absolute Value Equations , 2009 .

[18]  Lou Caccetta,et al.  A globally and quadratically convergent method for absolute value equations , 2011, Comput. Optim. Appl..

[19]  Cui-Xia Li,et al.  A Modified Generalized Newton Method for Absolute Value Equations , 2016, J. Optim. Theory Appl..

[20]  Milan Hladík,et al.  Bounds for the solutions of absolute value equations , 2018, Comput. Optim. Appl..