Numerical solutions of AXB = C for centrosymmetric matrix X under a specified submatrix constraint

We say that X = [xij] is centrosymmetric if xij = xn − j + 1, n − i + 1, 1⩽i, j⩽n. In this paper, we present an efficient algorithm for minimizing ∥AXB − C∥ where ∥·∥ is the Frobenius norm, A∈ℝm × n, B∈ℝn × s, C∈ℝm × s and X∈ℝn × n is centrosymmetric with a specified central submatrix [xij]p⩽i, j⩽n − p. Our algorithm produces a suitable X such that AXB = C in finitely many steps, if such an X exists. We show that the algorithm is stable in any case, and we give results of numerical experiments that support this claim. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  Percy Deift,et al.  On the determination of a tridiagonal matrix from its spectrum and a submatrix , 1984 .

[2]  James Demmel,et al.  Computing the Generalized Singular Value Decomposition , 1993, SIAM J. Sci. Comput..

[3]  Christopher Beattie,et al.  Optimal matrix approximants in structural identification , 1992 .

[4]  Yongxin Yuan,et al.  Inverse problems for symmetric matrices with a submatrix constraint , 2007 .

[5]  Lei Zhang,et al.  The expansion problem of anti-symmetric matrix under a linear constraint and the optimal approximation , 2006 .

[6]  Xi-Yan Hu,et al.  The nearness problems for symmetric centrosymmetric with a special submatrix constraint , 2010, Numerical Algorithms.

[7]  Jean Pierre Delmas,et al.  On adaptive EVD asymptotic distribution of centro-symmetric covariance matrices , 1999, IEEE Trans. Signal Process..

[8]  Yuan Lei,et al.  Least‐squares solutions of matrix inverse problem for bi‐symmetric matrices with a submatrix constraint , 2007, Numer. Linear Algebra Appl..

[9]  Xi-Yan Hu,et al.  Numerical solutions of AXB = C for mirrorsymmetric matrix X under a specified submatrix constraint , 2010, Computing.

[10]  Hua Dai,et al.  The nearness problems for symmetric matrix with a submatrix constraint , 2008 .

[11]  Xuli Han,et al.  Constructing Jacobi matrices with prescribed ordered defective eigenpairs and a principal submatrix , 2005 .

[12]  Salvatore D. Morgera,et al.  On the reducibility of centrosymmetric matrices — Applications in engineering problems , 1989 .

[13]  Salvatore D. Morgera,et al.  Some results on matrix symmetries and a pattern recognition application , 1986, IEEE Trans. Acoust. Speech Signal Process..

[14]  Yuan Lei,et al.  A minimal residual algorithm for the inconsistent matrix equation AXB=C over symmetric matrices , 2007, Appl. Math. Comput..

[15]  Qingxiang Yin,et al.  Construction of real antisymmetric and bi-antisymmetric matrices with prescribed spectrum data , 2004 .

[16]  P. Lancaster Explicit Solutions of Linear Matrix Equations , 1970 .

[17]  Zheng-Jian Bai,et al.  The Inverse Eigenproblem of Centrosymmetric Matrices with a Submatrix Constraint and Its Approximation , 2005, SIAM J. Matrix Anal. Appl..

[18]  Jian Li,et al.  Computationally efficient maximum-likelihood estimation of structured covariance matrices , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[19]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[20]  Xi-Yan Hu,et al.  Least squares solutions to AX = B for bisymmetric matrices under a central principal submatrix constraint and the optimal approximation , 2008 .

[21]  Xi-Yan Hu,et al.  The submatrix constraint problem of matrix equation AXB+CYD=E , 2009, Appl. Math. Comput..

[22]  G. Golub,et al.  Perturbation analysis of the canonical correlations of matrix pairs , 1994 .

[23]  Lei Zhang,et al.  The inverse problem of bisymmetric matrices with a submatrix constraint , 2004, Numer. Linear Algebra Appl..

[24]  W. Wang,et al.  The Structure of Weighting Coefficient Matrices of Harmonic Differential Quadrature and Its Applications , 1996, ArXiv.

[25]  Peter Lancaster,et al.  Linear matrix equations from an inverse problem of vibration theory , 1996 .

[26]  J. Weaver Centrosymmetric (Cross-Symmetric) Matrices, Their Basic Properties, Eigenvalues, and Eigenvectors , 1985 .