Generalized mirror symmetry and trace anomalies

We consider the compactification of M-theory on X7 with Betti numbers (b0, b1, b2, b3, b3, b2, b1, b0) and define a generalized mirror symmetry (b0, b1, b2, b3) → (b0, b1, b2 − ρ/2, b3 + ρ/2) under which ρ ≡ 7b0 − 5b1 + 3b2 − b3 changes sign. Generalized self-mirror theories with ρ = 0 have massless sectors with vanishing trace anomaly (before dualization). Examples include pure supergravity with and supergravity plus matter with .

[1]  S. Ferrara,et al.  Four curious supergravities , 2010, 1010.3173.

[2]  A. Montecinos,et al.  Logarithmic correction to BH entropy as Noether charge , 2010, 1003.1083.

[3]  H. Samtleben,et al.  Twin supergravities , 2009, 0904.1344.

[4]  I. Buchbinder,et al.  Quantum equivalence of massive antisymmetric tensor field models in curved space , 2008, 0806.3505.

[5]  S. Ferrara,et al.  d=4 Attractors, Effective Horizon Radius and Fake Supergravity , 2008, 0806.3196.

[6]  S. Solodukhin Entanglement entropy, conformal invariance and extrinsic geometry , 2008, 0802.3117.

[7]  S. Ferrara,et al.  Magic supergravities, N= 8 and black hole composites , 2006, hep-th/0606211.

[8]  C. Pena,et al.  The continuum limit of the quark mass step scaling function in quenched lattice QCD , 2004, hep-lat/0402022.

[9]  M. Gaberdiel,et al.  Generalised discrete torsion and mirror symmetry for G2 manifolds , 2004, hep-th/0401125.

[10]  B. Acharya ON MIRROR SYMMETRY FOR MANIFOLDS OF EXCEPTIONAL HOLONOMY , 1998 .

[11]  E. Cremmer,et al.  Dualisation of dualities II: twisted self-duality of doubled fields and superdualities , 1998, hep-th/9806106.

[12]  S. Ferrara,et al.  Central Extension of Extended Supergravities in Diverse Dimensions , 1996, hep-th/9608015.

[13]  E. Witten OnS-duality in Abelian gauge theory , 1995 .

[14]  C. Vafa,et al.  Dual pairs of type II string compactification , 1995, hep-th/9508064.

[15]  D. Fursaev,et al.  Temperature and entropy of a quantum black hole and conformal anomaly. , 1994, Physical review. D, Particles and fields.

[16]  C. Vafa,et al.  Superstrings and manifolds of exceptional holonomy , 1994, hep-th/9407025.

[17]  M. Duff Twenty years of the Weyl anomaly , 1993, hep-th/9308075.

[18]  I. Antoniadis,et al.  Moduli corrections to gravitational couplings from string loops , 1992, hep-th/9203071.

[19]  S. Ferrara,et al.  Extended supersymmetry in four-dimensional type II strings , 1989 .

[20]  M. Grisaru,et al.  Energy-momentum tensors, supercurrents, (super)traces, and quantum equivalence , 1984 .

[21]  E. Fradkin,et al.  Conformal anomaly in Weyl theory and anomaly free superconformal theories , 1984 .

[22]  M. Duff,et al.  Compactification of d = 11 supergravity on K3 × T3 , 1983 .

[23]  W. Siegel Quantum equivalence of different field representations , 1981 .

[24]  H. Nicolai,et al.  N=3 supersymmetry multiplets with vanishing trace anomaly: Building blocks of the N>3 supergravities , 1981 .

[25]  P. Nieuwenhuizen,et al.  Quantum inequivalence of different field representations , 1980 .

[26]  M. Roček,et al.  Vanishing one-loop. beta. function in gauged N>4 supergravity , 1980 .

[27]  E. Cremmer,et al.  The SO(8) supergravity , 1979 .

[28]  M. Duff Observations on Conformal Anomalies , 1977 .

[29]  D. joyce Compact Riemannian 7-manifolds with holonomy $G\sb 2$. II , 1996 .

[30]  S. Yau Essays on mirror manifolds , 1992 .