Complex Dynamics in Arrays of Memristor Oscillators via the Flux–Charge Method

The key intent of the work is to analyze complex dynamics and synchronization phenomena in a 1-D array of <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> diffusively coupled memristor-based oscillatory/chaotic circuits, i.e., each uncoupled oscillator is a 3<sup>rd</sup>–order memristor-based Chua’s circuit obtained by replacing the nonlinear resistor with an ideal flux-controlled memristor. It is shown that the state space <inline-formula> <tex-math notation="LaTeX">$ \mathbb {R}^{4N}$ </tex-math></inline-formula> in the voltage–current domain of the array can be decomposed in <inline-formula> <tex-math notation="LaTeX">$\infty ^{N}~3N$ </tex-math></inline-formula>-dimensional manifolds which are positively invariant for the nonlinear dynamics. Moreover, on each manifold the array obeys a different reduced-order dynamics in the flux-charge domain. These basic properties imply that two main types of bifurcations can occur, i.e., standard bifurcations on a fixed invariant manifold induced by changing the circuit parameters and bifurcations due to the variation of initial conditions and invariant manifold, but for fixed circuit parameters. The latter bifurcation phenomena are referred to as bifurcations without parameters. The reduced dynamics on invariant manifolds, and their analytic expressions, are the key tools for a comprehensive analysis of synchronization phenomena in the array of memristor-based Chua’s circuits. The main results are proved via a recently introduced technique for studying memristor-based circuits in the flux-charge domain.

[1]  Leon O. Chua,et al.  Memristor oscillators , 2008, Int. J. Bifurc. Chaos.

[2]  V. D. Shalfeev,et al.  The evolution of spatio-temporal disorder in a chain of unidirectionally-coupled Chua's circuits , 1995 .

[3]  Martin H. Levinson Linked: The New Science of Networks , 2004 .

[4]  Fernando Corinto,et al.  Nonlinear dynamics of memristor oscillators via the flux-charge analysis method , 2017, 2017 IEEE International Symposium on Circuits and Systems (ISCAS).

[5]  Bocheng Bao,et al.  Extreme multistability in a memristive circuit , 2016 .

[6]  Fernando Corinto,et al.  Memristor Circuits: Flux—Charge Analysis Method , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[7]  Simone Balatti,et al.  A 2-transistor/1-resistor artificial synapse capable of communication and stochastic learning in neuromorphic systems , 2015, Front. Neurosci..

[8]  Leslie S Smith,et al.  Neuromorphic systems: past, present and future. , 2010, Advances in experimental medicine and biology.

[9]  John Paul Strachan,et al.  Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing , 2017, Nature.

[10]  Ljupco Kocarev,et al.  Synchronization and Consensus in State-Dependent Networks , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  W. Dabrowski,et al.  Chaotic waves and spatio-temporal patterns in large arrays of doubly-coupled Chua's circuits , 1995 .

[12]  Pietro S. Pantano,et al.  Spontaneous Synchronization in Two Mutually Coupled Memristor-Based Chua’s Circuits: Numerical Investigations , 2014 .

[13]  Mustak E. Yalcin,et al.  Dynamic behavior of 1-D array of the memristively-coupled Chua's circuits , 2013, 2013 8th International Conference on Electrical and Electronics Engineering (ELECO).

[14]  Tianping Chen,et al.  New approach to synchronization analysis of linearly coupled ordinary differential systems , 2006 .

[15]  Bocheng Bao,et al.  Two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multistability , 2017 .

[16]  Ronald Tetzlaff,et al.  Synchronization conditions in simple memristor neural networks , 2015, J. Frankl. Inst..

[17]  Fernando Corinto,et al.  Memristor Circuits: Bifurcations without Parameters , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Leon O. Chua,et al.  Everything You Wish to Know About Memristors but Are Afraid to Ask , 2015, Handbook of Memristor Networks.

[19]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[20]  C. Guzelis,et al.  A computer-assisted investigation of a 2-D array of Chua's circuits , 1995 .

[21]  Wai Keung Wong,et al.  Stochastic Synchronization of Complex Networks With Mixed Impulses , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  ROBERTO GENESIO,et al.  Distortion Control of Chaotic Systems: the Chua's Circuit , 1993, J. Circuits Syst. Comput..

[23]  L. Chua Memristor-The missing circuit element , 1971 .

[24]  Valentina Lanza,et al.  Emerging dynamics in neuronal networks of diffusively coupled hard oscillators , 2011, Neural Networks.

[25]  Maolin Jin,et al.  Control and synchronization of the generalized Lorenz system with mismatched uncertainties using backstepping technique and time-delay estimation , 2017, Int. J. Circuit Theory Appl..

[26]  Fernando Corinto,et al.  Memristor Circuits: Pulse Programming via Invariant Manifolds , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[27]  Pietro S. Pantano,et al.  Synchronization and Waves in a Ring of Diffusively Coupled Memristor-Based Chua’s Circuits , 2014 .

[28]  Jun Tang,et al.  A class of initials-dependent dynamical systems , 2017, Appl. Math. Comput..

[29]  Hui Liu,et al.  Coupling Strength Allocation for Synchronization in Complex Networks Using Spectral Graph Theory , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[30]  Leon O. Chua,et al.  Global unfolding of Chua's circuit , 1993 .

[31]  Bocheng Bao,et al.  Multiple attractors in a non-ideal active voltage-controlled memristor based Chua's circuit , 2016 .

[32]  E. Sánchez,et al.  Chaotic synchronization in small assemblies of driven Chua's circuits , 2000 .

[33]  Qiang Xu,et al.  A Simple memristor Chaotic Circuit with Complex Dynamics , 2011, Int. J. Bifurc. Chaos.

[34]  Jianfeng Feng,et al.  Material Memristive Device Circuits with Synaptic Plasticity: Learning and Memory , 2011 .

[35]  Fernando Corinto,et al.  Periodic oscillations and bifurcations in cellular nonlinear networks , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[36]  Sabato Manfredi,et al.  Synchronization of Networks of Non-Identical Chua's Circuits: Analysis and Experiments , 2012, IEEE Trans. Circuits Syst. I Regul. Pap..

[37]  Valentina Lanza,et al.  Multiple attractors and bifurcations in Hard oscillators Driven by Constant inputs , 2012, Int. J. Bifurc. Chaos.

[38]  Luigi Fortuna,et al.  Memristor-Based Adaptive Coupling for Consensus and Synchronization , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[39]  Sundarapandian Vaidyanathan,et al.  A novel memristive time–delay chaotic system without equilibrium points , 2016 .

[40]  L. Chua,et al.  Synchronization in an array of linearly coupled dynamical systems , 1995 .