A New Incremental Harmonic Balance Method With Two Time Scales for Quasi-Periodic Motions of an Axially Moving Beam With Internal Resonance Under Single-Tone External Excitation

[1]  Maks Oblak,et al.  Incremental harmonic balance method with multiple time variables for dynamical systems with cubic non-linearities , 2004 .

[2]  S. Narayanan,et al.  Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method , 1999 .

[3]  M. Ghayesh Stability and bifurcations of an axially moving beam with an intermediate spring support , 2012 .

[4]  K. M. M. Prabhu,et al.  A note on "An accurate error analysis model for fast Fourier transform" , 1999, IEEE Trans. Signal Process..

[5]  Mergen H. Ghayesh,et al.  Three-Dimensional Nonlinear Global Dynamics of Axially Moving Viscoelastic Beams , 2016 .

[6]  Mohamed Belhaq,et al.  Quasi-Periodic Solutions and Stability for a Weakly Damped Nonlinear Quasi-Periodic Mathieu Equation , 2002 .

[7]  A. H. Nayfeh,et al.  Observations of modal interactions in resonantly forced beam-mass structures , 1991 .

[8]  Sebastian Oberst,et al.  Nonlinear transient and chaotic interactions in disc brake squeal , 2015 .

[9]  Fabrice Thouverez,et al.  A variable-coefficient harmonic balance method for the prediction of quasi-periodic response in nonlinear systems , 2015 .

[10]  Frank Schilder,et al.  Fourier methods for quasi‐periodic oscillations , 2006, International Journal for Numerical Methods in Engineering.

[11]  F. H. Ling,et al.  Quasi-periodic solutions calculated with the simple shooting technique , 1991 .

[12]  S. H. A. Chen,et al.  Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances , 2011 .

[13]  Lin Wang A further study on the non-linear dynamics of simply supported pipes conveying pulsating fluid , 2009 .

[14]  Yuefang Wang,et al.  Delay-induced dynamics of an axially moving string with direct time-delayed velocity feedback , 2010 .

[15]  Jonathan Summers,et al.  Variable-coefficient harmonic balance for periodically forced nonlinear oscillators , 1995, Nonlinear Dynamics.

[16]  C. Pierre,et al.  Influence of periodic excitation on self-sustained vibrations of one disk rotors in arbitrary length journals bearings , 2015 .

[17]  Mohamed Belhaq,et al.  Quasi-Periodic Oscillations, Chaos and Suppression of Chaos in a Nonlinear Oscillator Driven by Parametric and External Excitations , 1999 .

[18]  Liqun Chen,et al.  Bifurcation and chaos of an axially accelerating viscoelastic beam , 2004 .

[19]  Weidong Zhu,et al.  Dynamic Analysis of an Automotive Belt-Drive System With a Noncircular Sprocket by a Modified Incremental Harmonic Balance Method , 2017 .

[20]  Wei-dong Zhu,et al.  Nonlinear and Time-Varying Dynamics of High-Dimensional Models of a Translating Beam With a Stationary Load Subsystem , 2010 .

[21]  Wei Zhang,et al.  Nonlinear dynamics of higher-dimensional system for an axially accelerating viscoelastic beam with in-plane and out-of-plane vibrations , 2010 .

[22]  S. T. Noah,et al.  QUASI-PERIODIC RESPONSE AND STABILITY ANALYSIS FOR A NON-LINEAR JEFFCOTT ROTOR , 1996 .

[23]  Lin Wang,et al.  Nonlinear impacting oscillations of a fluid-conveying pipe subjected to distributed motion constraints , 2015 .

[24]  Yutai Ma,et al.  An accurate error analysis model for fast Fourier transform , 1997, IEEE Trans. Signal Process..

[25]  Y. K. Cheung,et al.  Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems , 1981 .

[26]  S. H. A. Chen,et al.  Application of the incremental harmonic balance method to cubic non-linearity systems , 1990 .

[27]  Soon-Yi Wu,et al.  Incremental harmonic balance method with multiple time scales for aperiodic vibration of nonlinear systems , 1983 .

[28]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .