Universal construction mechanism for networks from one-dimensional symbol sequences

Abstract In this paper we introduce construction mechanisms to generate directed networks from one-dimensional symbol sequences. We prove that any of these construction mechanism leads to the same undirected network. Further, we prove that the introduced construction mechanisms are universal in the sense that any undirected network can be generated by such a mechanism. In addition, we provide various numerical examples to demonstrate the applicability of the introduced mechanism.

[1]  Frank Emmert-Streib,et al.  Parametric Construction of Episode Networks from Pseudoperiodic Time Series Based on Mutual Information , 2011, PloS one.

[2]  Nazim Fatès,et al.  Experimental study of Elementary Cellular Automata dynamics using the density parameter , 2003, DMCS.

[3]  M. Newman Power laws, Pareto distributions and Zipf's law , 2005 .

[4]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[5]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 1997, Texts in Computer Science.

[6]  George Kingsley Zipf,et al.  Human Behaviour and the Principle of Least Effort: an Introduction to Human Ecology , 2012 .

[7]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[8]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[9]  Gilberto Corso Families and clustering in a natural numbers network. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  D. Bonchev Chemical Graph Theory: Introduction and Fundamentals , 1991 .

[11]  M. E. J. Newman,et al.  Power laws, Pareto distributions and Zipf's law , 2005 .

[12]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[13]  Sergey N. Dorogovtsev,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW (Physics) , 2003 .

[14]  Massimo Marchiori,et al.  Economic small-world behavior in weighted networks , 2003 .

[15]  R. Durrett Random Graph Dynamics: References , 2006 .

[16]  Anjan Kumar Chandra,et al.  A small world network of prime numbers , 2005 .

[17]  Frank Emmert-Streib,et al.  Exploratory analysis of spatiotemporal patterns of cellular automata by clustering compressibility. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Edda Klipp,et al.  Systems Biology , 1994 .

[19]  Donald B. Johnson,et al.  Efficient Algorithms for Shortest Paths in Sparse Networks , 1977, J. ACM.

[20]  Gregoire Nicolis,et al.  Dynamical Aspects of Interaction Networks , 2005, Int. J. Bifurc. Chaos.

[21]  F Emmert-Streib,et al.  Networks for systems biology: conceptual connection of data and function. , 2011, IET systems biology.

[22]  Stefan Bornholdt,et al.  Handbook of Graphs and Networks: From the Genome to the Internet , 2003 .

[23]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[24]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[25]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[26]  Aidong Zhang,et al.  Protein Interaction Networks: Computational Analysis , 2009 .

[27]  Eric D. Kolaczyk,et al.  Statistical Analysis of Network Data: Methods and Models , 2009 .

[28]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[29]  Bernhard Ø. Palsson Systems Biology: Epilogue , 2006 .

[30]  Frank Emmert-Streib,et al.  Statistic Complexity: Combining Kolmogorov Complexity with an Ensemble Approach , 2010, PloS one.

[31]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[32]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[33]  A. Rapoport,et al.  Connectivity of random nets , 1951 .

[34]  A. Church Review: A. M. Turing, On Computable Numbers, with an Application to the Entscheidungsproblem , 1937 .

[35]  B. Snel,et al.  The yeast coexpression network has a small‐world, scale‐free architecture and can be explained by a simple model , 2004, EMBO reports.

[36]  Marc Montminy,et al.  Transcriptional regulation by the phosphorylation-dependent factor CREB , 2001, Nature Reviews Molecular Cell Biology.

[37]  John Scott What is social network analysis , 2010 .

[38]  Albert-László Barabási,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW , 2004 .

[39]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[40]  Jürgen Kurths,et al.  Recurrence networks—a novel paradigm for nonlinear time series analysis , 2009, 0908.3447.

[41]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[42]  J. Monod,et al.  Genetic regulatory mechanisms in the synthesis of proteins. , 1961, Journal of molecular biology.

[43]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[44]  Frank Emmert-Streib,et al.  Organizational structure and the periphery of the gene regulatory network in B-cell lymphoma , 2012, BMC Systems Biology.

[45]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[46]  D. Watts,et al.  Small Worlds: The Dynamics of Networks between Order and Randomness , 2001 .

[47]  M Small,et al.  Complex network from pseudoperiodic time series: topology versus dynamics. , 2006, Physical review letters.

[48]  B. Alberts,et al.  Molecular Biology of the Cell (Fifth Edition) , 2008 .

[49]  Adam A. Margolin,et al.  Reverse engineering of regulatory networks in human B cells , 2005, Nature Genetics.

[50]  Frank Emmert-Streib,et al.  Inferring the conservative causal core of gene regulatory networks , 2010, BMC Systems Biology.

[51]  Stephen Warshall,et al.  A Theorem on Boolean Matrices , 1962, JACM.

[52]  M. Dehmer,et al.  Influence of the Time Scale on the Construction of Financial Networks , 2010, PloS one.

[53]  Hongzhe Li,et al.  Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks. , 2006, Biostatistics.

[54]  Lucas Lacasa,et al.  From time series to complex networks: The visibility graph , 2008, Proceedings of the National Academy of Sciences.

[55]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[56]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[57]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[58]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[59]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[60]  L. Kruglyak,et al.  Genetic Dissection of Transcriptional Regulation in Budding Yeast , 2002, Science.

[61]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[62]  P. Bourgine,et al.  Topological and causal structure of the yeast transcriptional regulatory network , 2002, Nature Genetics.

[63]  M. Gerstein,et al.  Structure and evolution of transcriptional regulatory networks. , 2004, Current opinion in structural biology.

[64]  S. Wasserman,et al.  Social Network Analysis: Computer Programs , 1994 .

[65]  A. Barabasi,et al.  High-Quality Binary Protein Interaction Map of the Yeast Interactome Network , 2008, Science.

[66]  G. Glazko,et al.  Network biology: a direct approach to study biological function , 2011, Wiley interdisciplinary reviews. Systems biology and medicine.

[67]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.