Mineral fabrics in high-level intrusions recording crustal strain and volcano–tectonic interactions: the Shellenbarger pluton, Sierra Nevada, California

The Minarets caldera is a volcano–plutonic complex in the Sierra Nevada, California, that exemplifies complex interactions between volcanism and tectonic deformation in continental-margin arcs. Caldera evolution commenced with emplacement of pre-collapse rhyolitic ash-flow tuff, followed by collapse and deposition of volcanic breccia and rhyodacitic ash-flow tuff. Subsequently, the volcanic rocks were deformed along the regional Bench Canyon shear zone. The caldera centre was then intruded by the resurgent c. 100 Ma steep-sided Shellenbarger granite pluton, which steepened the shear zone foliation. The pluton was overprinted by syn- to post-magmatic ∼NNE–SSW horizontal shortening; the same shortening was documented in several other Late Cretaceous syntectonic plutons in the Sierra Nevada and interpreted to record dextral transpression during convergence of the Farallon and North American plates. To explain the unusual tectonic fabric in the shallow-level Shellenbarger pluton, we develop a general model for strain partitioning in syntectonic magma bodies emplaced at various crustal levels. We propose that shallow intrusions, isolated within stiff crust, may tend to accommodate minor pure shear strain whereas simple shear dominates along weak faults and shear zones. By contrast, a rheological reversal is crossed deeper in the crust and magma bodies become the weakest, simple shear-dominated parts of the system. Supplementary material: Analytical methods and anisotropy of magnetic susceptibility and U–Th–Pb isotopic data are available at https://doi.org/10.6084/m9.figshare.c.3582749

[1]  J. Anderson,et al.  Tracking paleodeformation fields in the Mesozoic central Sierra Nevada arc: Implications for intra-arc cyclic deformation and arc tempos , 2015 .

[2]  J. Studýnka,et al.  Fully automated measurement of anisotropy of magnetic susceptibility using 3D rotator , 2014 .

[3]  M. Manga,et al.  The role of magmatically driven lithospheric thickening on arc front migration , 2014 .

[4]  M. Petronis,et al.  Controls on emplacement of the Caledonian Ross of Mull Granite, NW Scotland: Anisotropy of magnetic susceptibility and magmatic and regional structures , 2012 .

[5]  J. Žák,et al.  A new approach to modeling perpendicular fabrics in porphyritic plutonic rocks using the finite element method , 2012, International Journal of Earth Sciences.

[6]  J. Skarmeta Interaction between magmatic and tectonic stresses during dyke intrusion , 2011 .

[7]  D. Furbish,et al.  Growth of plutons by incremental emplacement of sheets in crystal-rich host: Evidence from Miocene intrusions of the Colorado River region, Nevada, USA , 2011 .

[8]  E. Horsman,et al.  Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs , 2011 .

[9]  M. Petronis,et al.  Late stage oxide growth associated with hydrothermal alteration of the Western Granite, Isle of Rum, NW Scotland , 2011 .

[10]  D. Okaya,et al.  Magmatic lobes as “snapshots” of magma chamber growth and evolution in large, composite batholiths: An example from the Tuolumne intrusion, Sierra Nevada, California , 2010 .

[11]  M. Jackson,et al.  Structural geology, petrofabrics and magnetic fabrics (AMS, AARM, AIRM) , 2010 .

[12]  J. Hellstrom,et al.  Improved laser ablation U‐Pb zircon geochronology through robust downhole fractionation correction , 2010 .

[13]  K. Benn Anisotropy of magnetic susceptibility fabrics in syntectonic plutons as tectonic strain markers: the example of the Canso pluton, Meguma Terrane, Nova Scotia , 2009, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[14]  Miguel Garcés Crespo,et al.  Dike intrusion under shear stress: Effects on magnetic and vesicle fabrics in dikes from rift zones of Tenerife (Canary Islands) , 2007 .

[15]  C. Faccenna,et al.  Plate kinematics, slab shape and back-arc stress: A comparison between laboratory models and current subduction zones , 2007 .

[16]  A. Kontny,et al.  Curie temperatures of synthetic titanomagnetites in the Fe‐Ti‐O system: Effects of composition, crystal chemistry, and thermomagnetic methods , 2006 .

[17]  E. Petrovský,et al.  On determination of the Curie point from thermomagnetic curves , 2006 .

[18]  E. Herrero-Bervera,et al.  Alteration induced changes of magnetic fabric as exemplified by dykes of the Koolau volcanic range , 2005 .

[19]  S. Titus,et al.  Geologic and geophysical investigation of two fine-grained granites, Sierra Nevada Batholith, California: Evidence for structural controls on emplacement and volcanism , 2005 .

[20]  C. Teyssier,et al.  Fabric studies within the Cascade Lake shear zone, Sierra Nevada, California , 2005 .

[21]  William L. Griffin,et al.  The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology , 2004 .

[22]  W. Hildreth Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems , 2004 .

[23]  O. Bachmann,et al.  On the Origin of Crystal-poor Rhyolites: Extracted from Batholithic Crystal Mushes , 2004 .

[24]  A. Glazner,et al.  Sheeted intrusion of the synkinematic McDoogle pluton, Sierra Nevada, California , 2003 .

[25]  F. Hrouda Indices for Numerical Characterization of the Alteration Processes of Magnetic Minerals Taking Place During Investigation of Temperature Variation of Magnetic Susceptibility , 2003 .

[26]  P. Robion,et al.  Anisotropy of magnetic susceptibility of heated rocks , 2003 .

[27]  Hervé Diot,et al.  Asymmetrical to symmetrical magnetic fabric of dikes: Paleo-flow orientations and Paleo-stresses recorded on feeder-bodies from the Motru Dike Swarm (Romania) , 2003 .

[28]  M. Markley,et al.  A record of crustal-scale stress; igneous foliation and lineation in the Mount Waldo Pluton, Waldo County, Maine , 2003 .

[29]  A. Chauvet,et al.  Magnetic fabrics and fluid flow directions in hydrothermal systems. A case study in the Chaillac Ba–F–Fe deposits (France) , 2003 .

[30]  E. Cañón‐Tapia Factors affecting the relative importance of shape and distribution anisotropy in rocks: theory and experiments , 2001 .

[31]  E. P. Oliveira,et al.  Development of symmetrical and asymmetrical fabrics in sheet-like igneous bodies: the role of magma flow and wall-rock displacements in theoretical and natural cases , 2001 .

[32]  S. Kruse,et al.  Magmatic fabrics in batholiths as markers of regional strains and plate kinematics: example of the Cretaceous Mt. Stuart batholith , 2001 .

[33]  P. Olivier,et al.  Strain partitioning in a pluton during emplacement in transpressional regime: the example of the Néouvielle granite (Pyrenees) , 2001 .

[34]  R. Fiske,et al.  Steep tilting of metavolcanic rocks by multiple mechanisms, central Sierra Nevada, California , 2000 .

[35]  Basil Tikoff,et al.  Strain partitioning during partial melting and crystallizing felsic magmas , 1999 .

[36]  B. Tikoff,et al.  Three-dimensional reference deformations and strain facies , 1999 .

[37]  M. Perrin,et al.  Is this magnetic fabric normal? A review and case studies in volcanic formations , 1999 .

[38]  C. Andronicos,et al.  Large‐scale transpressive shear zone patterns and displacements within magmatic arcs: The Coast Plutonic Complex, British Columbia , 1999 .

[39]  C. Davidson,et al.  KINEMATICS AND TECTONIC SIGNIFICANCE OF TRANSPRESSIVE STRUCTURES WITHIN THE COAST PLUTONIC COMPLEX, BRITISH COLUMBIA , 1999 .

[40]  T. Fowler,et al.  Interpreting magmatic fabric patterns in plutons , 1998 .

[41]  R. Miller,et al.  Stoped blocks in plutons: paleo-plumb bobs, viscometers, or chronometers? , 1998 .

[42]  R. Miller,et al.  Magma emplacement during arc‐perpendicular shortening: An example from the Cascades crystalline core, Washington , 1998 .

[43]  Patrick Launeau,et al.  Magnetite grain shape fabric and distribution anisotropy vs rock magnetic fabric: a three-dimensional case study , 1998 .

[44]  B. Tikoff,et al.  Transpressional shearing and strike‐slip partitioning in the Late Cretaceous Sierra Nevada magmatic arc, California , 1997 .

[45]  F. Hrouda,et al.  Refined technique for susceptibility resolution into ferromagnetic and paramagnetic components based on susceptibility temperature-variation measurement , 1997 .

[46]  B. Henry,et al.  Tectonic applications of magnetic susceptibility and its anisotropy , 1997 .

[47]  W. D. Means,et al.  Direct observation of deformation processes in crystal mushes , 1996 .

[48]  D. Thorkelson Subduction of diverging plates and the principles of slab window formation , 1996 .

[49]  B. McNulty Shear zone development during magmatic arc construction: The Bench Canyon shear zone, central Sierra Nevada, California , 1995 .

[50]  R. Schweickert,et al.  The Gem Lake shear zone: Cretaceous dextral transpression in the Northern Ritter Range pendant, eastern Sierra Nevada, California , 1995 .

[51]  P. Launeau,et al.  Magnetic fabric vs. magnetite and biotite shape fabrics of the magnetite-bearing granite pluton of Gameleiras (Northeast Brazil) , 1995 .

[52]  W. Griffin,et al.  THREE NATURAL ZIRCON STANDARDS FOR U‐TH‐PB, LU‐HF, TRACE ELEMENT AND REE ANALYSES , 1995 .

[53]  P. Renne,et al.  Variations in deformation fields during development of a large-volume magmatic arc, central Sierra Nevada, California , 1995 .

[54]  R. J. Reavy,et al.  Caledonian plutonism and major lineaments in the SW Scottish Highlands , 1994, Journal of the Geological Society.

[55]  A. Brandon,et al.  Mesozoic granitoid magmatism in southeast British Columbia: Implications for the origin of granitoid belts in the North American Cordillera , 1994 .

[56]  K. Benn Overprinting of magnetic fabrics in granites by small strains: numerical modelling , 1994 .

[57]  R. Fiske,et al.  Middle Cretaceous ash-flow tuff and caldera-collapse deposit in the Minarets Caldera, east-central Sierra Nevada, California , 1994 .

[58]  A. Vauchez,et al.  The Pombal granite pluton: Magnetic fabric, emplacement and relationships with the Brasiliano strike-slip setting of NE Brazil (Paraiba State) , 1994 .

[59]  K. Karlstrom,et al.  Pluton emplacement along an active ductile thrust zone, Piute Mountains, southeastern California: Interaction between deformational and solidification processes , 1993 .

[60]  C. Teyssier,et al.  Crustal-scale, en echelon P-shear tensional bridges: A possible solution to the batholithic room problem , 1992 .

[61]  S. Paterson,et al.  Rates of processes in magmatic arcs : implications for the timing and nature of pluton emplacement and wall rock deformation , 1992 .

[62]  Christina Y. Chan-Park,et al.  Distribution anisotropy: The cause of AMS in igneous rocks? , 1991 .

[63]  S. Paterson A reinterpretation of conjugate folds in the central Sierra Nevada, California , 1989 .

[64]  D. Pollard,et al.  Progress in understanding jointing over the past century , 1988 .

[65]  T. Bhattacharyya,et al.  Extent of the Nevadan orogeny, central Sierra Nevada, California , 1987 .

[66]  R. Schweickert,et al.  Timing and structural expression of the Nevadan orogeny, Sierra Nevada, California: Discussions and reply , 1985 .

[67]  T. Moon,et al.  Nucleation theory and domain states in multidomain magnetic material , 1985 .

[68]  R. Pilger,et al.  Cenozoic plate kinematics, subduction and magmatism: South American Andes , 1984, Journal of the Geological Society.

[69]  R. Schweickert,et al.  Timing and structural expression of the Nevadan orogeny, Sierra Nevada, California , 1984 .

[70]  O. L. Jensen Andean tectonics related to geometry of subducted Nazca plate: Discussion and reply , 1984 .

[71]  F. Hrouda Magnetic anisotropy of rocks and its application in geology and geophysics , 1982 .

[72]  J. Ramsay,et al.  Constraints on geological strain rates: arguments from finite strain states of naturally deformed rocks , 1982 .

[73]  V. Jelínek Characterization of the magnetic fabric of rocks , 1981 .

[74]  T. Engelder,et al.  On the use of regional joint sets as trajectories of paleostress fields during the development of the Appalachian Plateau, New York , 1980 .

[75]  V. Kropáček,et al.  Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens , 1978 .

[76]  J. Sethares,et al.  Magnetic anisotropy of , 1977 .

[77]  R. Fiske,et al.  Significance of conjugate folds and crenulations in the central Sierra Nevada, California , 1976 .

[78]  N. Price Rates of deformation , 1975, Journal of the Geological Society.

[79]  Robert F. Butler,et al.  Theoretical single‐domain grain size range in magnetite and titanomagnetite , 1975 .

[80]  R. Bhathal Magnetic anisotropy in rocks , 1971 .

[81]  W. Hamilton Mesozoic California and the Underflow of Pacific Mantle , 1969 .

[82]  Taiji Arakawa,et al.  Paramagnetic Resonance of Mn++ in MgTiF6·6H2O , 1962 .

[83]  F. Poitrasson,et al.  Hydrothermally-induced changes in mineralogy and magnetic properties of oxidized A-type granites , 2015 .

[84]  P. DeCelles,et al.  Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile , 2015 .

[85]  C. Beaumont,et al.  Geodynamic models of Cordilleran orogens: Gravitational instability of magmatic arc roots , 2015 .

[86]  Dyanna M. Czeck,et al.  Rheological implications of heterogeneous deformation at multiple scales in the Late Cretaceous Sierra Nevada, California , 2008 .

[87]  J. Žák,et al.  Four magmatic fabrics in the Tuolumne batholith, central Sierra Nevada, California (USA): Implications for interpreting fabric patterns in plutons and evolution of magma chambers in the upper crust , 2007 .

[88]  O. Oncken,et al.  Central and Southern Andean Tectonic Evolution Inferred from Arc Magmatism , 2006 .

[89]  O. Oncken The Andes : active subduction orogeny , 2006 .

[90]  M. Jackson,et al.  Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks , 2004, Geological Society, London, Special Publications.

[91]  F. Martín-Hernández,et al.  Magnetic fabric: methods and applications , 2004 .

[92]  A. Hirt,et al.  Development of magnetic fabrics during hydrothermal alteration in the Soultz-sous-Forêts granite from the EPS-1 borehole, Upper Rhine Graben , 2004, Geological Society, London, Special Publications.

[93]  D. Chardon Strain partitioning and batholith emplacement at the root of a transpressive magmatic arc , 2003 .

[94]  J. Žák,et al.  Quadruple-pronged enclaves: their significance for the interpretation of multiple magmatic fabrics in plutons , 2003 .

[95]  R. Larter,et al.  Intra-Oceanic Subduction Systems: Tectonic and Magmatic Processes , 2003 .

[96]  Y. Tatsumi,et al.  The subduction factory: its role in the evolution of the Earth’s crust and mantle , 2003, Geological Society, London, Special Publications.

[97]  K. Ludwig User's Manual for Isoplot 3.00 - A Geochronological Toolkit for Microsoft Excel , 2003 .

[98]  A. Cruden,et al.  Multistage emplacement of the Mount Givens pluton, central Sierra Nevada batholith, California , 2000 .

[99]  Hervé Diot,et al.  Analogue and numerical modelling of shape fabrics: application to strain and flow determination in magmas , 2000, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[100]  C. Teyssier,et al.  Transpressional kinematics and magmatic arcs , 1998, Geological Society, London, Special Publications.

[101]  B. Tikoff,et al.  Development of Magmatic to Solid-State Fabrics during Syntectonic Emplacement of the Mono Creek Granite, Sierra Nevada Batholith , 1997 .

[102]  W. E. Stephens,et al.  Granite: From Segregation of Melt to Emplacement Fabrics , 1997 .

[103]  Basil Tikoff,et al.  Stretching lineations in transpressional shear zones: an example from the Sierra Nevada Batholith , 1997 .

[104]  F. Blanckenburg,et al.  Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens , 1995 .

[105]  D. Peate,et al.  Tectonic Implications of the Composition of Volcanic Arc Magmas , 1995 .

[106]  S. Eggins,et al.  Subduction zone magmatism , 1995 .

[107]  A. Stephenson Distribution anisotropy: two simple models for magnetic lineation and foliation , 1994 .

[108]  Basil Tikoff,et al.  Strain modeling of transpressional and transtensional deformation , 1994 .

[109]  B. Pluijm,et al.  The quantification of crystallographic preferred orientation using magnetic anisotropy , 1993 .

[110]  F. Hrouda,et al.  The magnetic fabric relationship between sedimentary and basement nappes in the High Tatra Mountains, N. Slovakia , 1991 .

[111]  R. Vernon,et al.  A review of criteria for the identification of magmatic and tectonic foliations in granitoids , 1989 .

[112]  D. Hutton Granite emplacement mechanisms and tectonic controls: inferences from deformation studies , 1988, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[113]  B. Chappell,et al.  The Peninsular Ranges Batholith: an insight into the evolution of the Cordilleran batholiths of southwestern North America , 1988, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[114]  R. Kistler,et al.  Paleozoic and Mesozoic deformations in the central Sierra Nevada, California , 1980 .

[115]  R. Fiske,et al.  Paleogeographic Significance of Volcanic Rocks of the Ritter Range Pendant, Central Sierra Nevada, California , 1978 .

[116]  K. McDougall,et al.  Mesozoic paleogeography of the Western United States , 1978 .

[117]  R. Fiske,et al.  Strain in metamorphosed volcaniclastic rocks and its bearing on the evolution of orogenic belts , 1977 .

[118]  A. Berger,et al.  The geology of Donegal : a study of granite emplacement and unroofing , 1972 .

[119]  N. K. Huber,et al.  Geologic map of the Devils Postpile quadrangle, Sierra Nevada, California , 1965 .

[120]  J. Clegg Rock magnetism , 1956, Nature.