Hybrid logic with the difference modality for generalisations of graphs

Abstract We discuss recent work generalising the basic hybrid logic with the difference modality to any reasonable notion of transition. This applies equally to both subrelational transitions such as monotone neighbourhood frames or selection function models as well as those with more structure such as Markov chains and alternating temporal frames. We provide a generic canonical cut-free sequent system and a terminating proof-search strategy for the fragment without the difference modality but including the global modality.

[1]  Dirk Pattinson,et al.  Admissibility of Cut in Coalgebraic Logics , 2008, CMCS.

[2]  Marc Pauly,et al.  A Modal Logic for Coalitional Power in Games , 2002, J. Log. Comput..

[3]  H. Gumm Elements Of The General Theory Of Coalgebras , 1999 .

[4]  H. Peter Gumm Copower functors , 2009, Theor. Comput. Sci..

[5]  Corina Cîrstea,et al.  Modular construction of complete coalgebraic logics , 2007, Theor. Comput. Sci..

[6]  Dirk Pattinson,et al.  Coalgebraic Hybrid Logic , 2009, FoSSaCS.

[7]  Lutz Schröder A Finite Model Construction for Coalgebraic Modal Logic , 2006, FoSSaCS.

[8]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[9]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.

[10]  Torben Braüner,et al.  Tableau-based Decision Procedures for Hybrid Logic , 2006, J. Log. Comput..

[11]  Patrick Blackburn,et al.  Termination for Hybrid Tableaus , 2007, J. Log. Comput..

[12]  Volker Haarslev,et al.  Algebraic Tableau Algorithm for ALCOQ , 2009, Description Logics.

[13]  Patrick Girard,et al.  From onions to broccoli: generalizing Lewis' counterfactual logic , 2007, J. Appl. Non Class. Logics.

[14]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[15]  Dirk Pattinson,et al.  Rank-1 Modal Logics are Coalgebraic , 2007, J. Log. Comput..

[16]  Gert Smolka,et al.  Terminating Tableaux for Graded Hybrid Logic with Global Modalities and Role Hierarchies , 2009, TABLEAUX.

[17]  Dirk Pattinson,et al.  Generic Modal Cut Elimination Applied to Conditional Logics , 2009, TABLEAUX.

[18]  Lutz Schröder,et al.  Expressivity of coalgebraic modal logic: The limits and beyond , 2008, Theor. Comput. Sci..

[19]  Dirk Pattinson,et al.  Beyond Rank 1: Algebraic Semantics and Finite Models for Coalgebraic Logics , 2008, FoSSaCS.

[20]  Dirk Pattinson Expressive Logics for Coalgebras via Terminal Sequence Induction , 2004, Notre Dame J. Formal Log..

[21]  Dirk Pattinson,et al.  PSPACE Bounds for Rank-1 Modal Logics , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[22]  H. Peter Gumm From T-Coalgebras to Filter Structures and Transition Systems , 2005, CALCO.

[23]  Dirk Pattinson,et al.  Modular Algorithms for Heterogeneous Modal Logics , 2007, ICALP.

[24]  Gert Smolka,et al.  Terminating Tableaux for Hybrid Logic with the Difference Modality and Converse , 2008, IJCAR.

[25]  Michael Huth,et al.  Abstraction and Probabilities for Hybrid Logics , 2005, QAPL.