Evolutionary Approach to the Maximum Clique Problem: Empirical Evidence on a Larger Scale

An algorithm for finding a maximum clique in a graph is presented which uses the Comtet regularization of the Motzkin/Straus continuous problem formulation: maximize an indefinite quadratic form over the standard simplex. We shortly review some surprising connections of the problem with dynamic principles of evolutionary game theory, and give a detailed report on our numerical experiences with the method proposed.

[1]  Arun Jagota,et al.  Approximating maximum clique with a Hopfield network , 1995, IEEE Trans. Neural Networks.

[2]  P. Taylor,et al.  Evolutionarily Stable Strategies and Game Dynamics , 1978 .

[3]  J. Weibull,et al.  Does Neutral Stability Imply Lyapunov Stability , 1995 .

[4]  Heinz Mühlenbein,et al.  Evolution algorithms in combinatorial optimization , 1988, Parallel Comput..

[5]  Immanuel M. Bomze,et al.  Evolution towards the Maximum Clique , 1997, J. Glob. Optim..

[6]  R. A. Fisher,et al.  The Genetical Theory of Natural Selection , 1931 .

[7]  Parthasarathy Guturu,et al.  Clique finding-a genetic approach , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[8]  E. Akin,et al.  Dynamics of games and genes: Discrete versus continuous time , 1983 .

[9]  Panos M. Pardalos,et al.  The maximum clique problem , 1994, J. Glob. Optim..

[10]  L. Baum,et al.  An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology , 1967 .

[11]  I. Bomze Cross entropy minimization in uninvadable states of complex populations , 1991 .

[12]  W. Ewens Mathematical Population Genetics , 1980 .

[13]  Alan Hastings,et al.  Aspects of Optimality Behavior in Population Genetics Theory , 1995, Evolution and Biocomputation.

[14]  T. Motzkin,et al.  Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.

[15]  A. Jagota,et al.  Feasible and infeasible maxima in a quadratic program for maximum clique , 1996 .

[16]  Panos M. Pardalos,et al.  Parallel Processing of Discrete Optimization Problems , 1995 .

[17]  Daniel L. Stein,et al.  Lectures In The Sciences Of Complexity , 1989 .

[18]  Panos M. Pardalos,et al.  A continuous based heuristic for the maximum clique problem , 1993, Cliques, Coloring, and Satisfiability.

[19]  M. Pelillo Relaxation labeling networks for the maximum clique problem , 1996 .

[20]  P. Pardalos,et al.  A global optimization approach for solving the maximum clique problem , 1990 .

[21]  Panos M. Pardalos,et al.  Test case generators and computational results for the maximum clique problem , 1993, J. Glob. Optim..

[22]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[23]  L. R. Rabiner,et al.  An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition , 1983, The Bell System Technical Journal.

[24]  L. Baum,et al.  Growth transformations for functions on manifolds. , 1968 .

[25]  Laura A. Sanchis,et al.  Approximately solving Maximum Clique using neural network and related heuristics , 1993, Cliques, Coloring, and Satisfiability.

[26]  Panos M. Pardalos,et al.  Continuous Characterizations of the Maximum Clique Problem , 1997, Math. Oper. Res..

[27]  F. Eeckman,et al.  Evolution and Biocomputation: Computational Models of Evolution , 1995 .

[28]  M. Kimura On the change of population fitness by natural selection2 3 , 1958, Heredity.

[29]  László Lovász,et al.  Approximating clique is almost NP-complete , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[30]  Alan Hastings,et al.  Optimization as a Technique for Studying Population , 1995, Evolution and Biocomputation.

[31]  Josef Hofbauer,et al.  The theory of evolution and dynamical systems , 1988 .

[32]  M. Kimura,et al.  An introduction to population genetics theory , 1971 .

[33]  Thomas Bäck,et al.  An evolutionary heuristic for the maximum independent set problem , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[34]  S. Karlin Mathematical models, problems, and controversies of evolutionary theory , 1984 .