Calculation of Synthetic Seismograms with Gaussian Beams

In this paper, an overview of the calculation of synthetic seismograms using the Gaussian beam method is presented accompanied by some representative applications and new extensions of the method. Since caustics are a frequent occurrence in seismic wave propagation, modifications to ray theory are often necessary. In the Gaussian beam method, a summation of paraxial Gaussian beams is used to describe the propagation of high-frequency wave fields in smoothly varying inhomogeneous media. Since the beam components are always nonsingular, the method provides stable results over a range of beam parameters. The method has been shown, however, to perform better for some problems when different combinations of beam parameters are used. Nonetheless, with a better understanding of the method as well as new extensions, the summation of Gaussian beams will continue to be a useful tool for the modeling of high-frequency seismic waves in heterogeneous media.

[1]  Thorkild B. Hansen,et al.  Exact complex source representations of time-harmonic radiation , 1997 .

[2]  Tariq Alkhalifah,et al.  Gaussian beam depth migration for anisotropic media , 1995 .

[3]  Robert L. Nowack,et al.  Gaussian beam synthetic seismograms , 1986 .

[4]  Yehoshua Y. Zeevi,et al.  Oversampling in the Gabor scheme , 1993, IEEE Trans. Signal Process..

[5]  A. Hanyga Gaussian beams in anisotropic elastic media , 1986 .

[6]  N. R. Hill,et al.  Gaussian beam migration , 1990 .

[7]  D. Hale Migration by the Kirchhoff, slant stack, and Gaussian beam methods , 1992 .

[8]  Understanding finite-frequency wave phenomena: phase-ray formulation and inhomogeneity scattering , 1994 .

[9]  Luděk Klimeš,et al.  Gaussian packets in the computation of seismic wavefields , 1989 .

[10]  T. Teng,et al.  Surface-wave mapping of the crust and upper mantle in the Arctic region , 1989 .

[11]  K. Aki,et al.  3-D simulations of surface wave propagation in the Kanto sedimentary basin, Japan—part 1: Application of the surface wave Gaussian beam method , 1993, Bulletin of the Seismological Society of America.

[12]  D. Hale Computational aspects of Gaussian beam migration , 1992 .

[13]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[14]  Shie Qian,et al.  Discrete Gabor transform , 1993, IEEE Trans. Signal Process..

[15]  Raul Madariaga,et al.  Seismic waveform modeling in heterogeneous media by ray perturbation theory , 1987 .

[16]  M. M. Popov,et al.  Application of the method of summation of Gaussian beams for calculation of high-frequency wave fields , 1981 .

[17]  K. Chun,et al.  Complex rays in elastic and anelastic media , 1994 .

[18]  V. Červený Expansion of a Plane Wave into Gaussian Beams , 2002 .

[19]  N. Jobert Mantle wave deviations from ‘pure-path’ propagation on aspherical models of the Earth by Gaussian beam waveform synthesis , 1987 .

[20]  V. Červený Synthetic body wave seismograms for laterally varying layered structures by the Gaussian beam method , 1983 .

[21]  Y. Dezhong STUDY OF COMPLEX HUYGENS' PRINCIPLE , 1995 .

[22]  V. Cormier Focusing and defocusing of teleseismic P waves by known three-dimensional structure beneath pahute mesa, Nevada Test Site , 1987 .

[23]  Luděk Klimeš,et al.  Discretization error for the superposition of Gaussian beams , 1986 .

[24]  I-Tai Lu,et al.  Three‐dimensional source field modeling by self‐consistent Gaussian beam superposition , 1992 .

[25]  S. Raz,et al.  Beam stacking: A generalized preprocessing technique , 1987 .

[26]  M. Weber,et al.  Evidence of a laterally variable lower mantle structure from P‐ and S‐waves , 1990 .

[27]  A. Katchalov,et al.  Application of the Gaussian beam method to elasticity theory , 1985 .

[28]  F. Hron,et al.  The ray series method and dynamic ray tracing system for three-dimensional inhomogeneous media , 1980 .

[29]  L. Klimeš The Relation between Gaussian Beams and Maslov Asymptotic Theory , 1984 .

[30]  G. Müller Efficient calculation of Gaussian-beam seismograms for two-dimensional inhomogeneous media , 1984 .

[31]  M. M. Popov,et al.  Computation of wave fields in inhomogeneous media — Gaussian beam approach , 1982 .

[32]  Ari Ben-Menahem,et al.  Range of validity of seismic ray and beam methods in general inhomogeneous media - I. General theory , 1985 .

[33]  Gaussian beam modelling of upper mantle phases , 1985 .

[34]  The stable‐beam seismic modelling method1 , 1995 .

[35]  K. Yomogida Gaussian beams for surface waves in transversely isotropic media , 1987 .

[36]  M. Popov,et al.  Applicability of the Gaussian beams summation method to problems with angular points on the boundaries , 1985 .

[37]  M. Porter,et al.  Gaussian beam tracing for computing ocean acoustic fields , 1987 .

[38]  Luděk Klimeš,et al.  Expansion of a high-frequency time-harmonic wavefield given on an initial surface into Gaussian beams , 1984 .

[39]  E. Heyman Complex source pulsed beam representation of transient radiation , 1989 .

[40]  J. Keller,et al.  Geometrical theory of diffraction. , 1962, Journal of the Optical Society of America.

[41]  L. Klimeš,et al.  Optimization of the Shape of Gaussian Beams of a Fixed Length , 1989 .

[42]  L. Felsen,et al.  Source field modeling by self-consistent Gaussian beam superposition (two-dimensional) , 1991 .

[43]  Dennis Gabor,et al.  Theory of communication , 1946 .

[44]  K. Aki,et al.  Iterative inversion for velocity using waveform data , 1986 .

[45]  Marc Geilen,et al.  On the discrete Gabor transform and the discrete Zak transform , 1996, Signal Process..

[46]  N. Jobert,et al.  An application of ray theory to the propagation of waves along a laterally heterogeneous spherical surface , 1983 .

[47]  M. Bastiaans,et al.  Gabor's expansion of a signal into Gaussian elementary signals , 1980, Proceedings of the IEEE.

[48]  M. M. Popov,et al.  Computation of ray amplitudes in inhomogeneous media with curved interfaces , 1978 .

[49]  L. Klimeš,et al.  The relation between Gaussian beams and Maslov asymptotic theory , 1984 .

[50]  V. Cormier Slab diffraction of S waves , 1989 .

[51]  R. Madariaga Gaussian beam synthetic seismograms in a vertically varying medium , 1984 .

[52]  Douglas J. Foster,et al.  Global asymptotic solutions of the wave equation , 1991 .

[53]  S. Sekiguchi Amplitude distribution of seismic waves for laterally heterogeneous structures including a subducting slab , 1992 .

[54]  A. Katchalov,et al.  Gaussian beam methods and theoretical seismograms , 1988 .

[55]  Jason Wexler,et al.  Discrete Gabor expansions , 1990, Signal Process..

[56]  R. Nowack,et al.  Linearized rays, amplitude and inversion , 1988 .

[57]  C. Thomson Complex Rays and Wave Packets for Decaying Signals in Inhomogeneous, Anisotropic and Anelastic Media , 2002 .

[58]  Benjamin S. White,et al.  Some remarks on the Gaussian beam summation method , 1987 .

[59]  R. Madariaga,et al.  Body waveform modeling of east Mediterranean earthquakes at intermediate distances (17°–30°) with a Gaussian beam summation method , 1999 .

[60]  J. Klauder Global, uniform, asymptotic wave-equation solutions for large wavenumbers , 1987 .

[61]  K. Aki,et al.  Waveform synthesis of surface waves in a laterally heterogeneous Earth by the Gaussian Beam Method , 1985 .

[62]  Seismic modelling over 3-D homogeneous layered structures—summation of Gaussian beams , 1995 .

[63]  Keiiti Aki,et al.  The two‐dimensional Gaussian beam synthetic method: Testing and application , 1984 .

[64]  G. A. Deschamps,et al.  Gaussian beam as a bundle of complex rays , 1971 .

[65]  Numerical modelling of time-harmonic seismic wave fields in simple structures by the Gaussian beam method. Part II , 1984 .

[66]  W. Friederich A new approach to Gaussian beams on a sphere: theory and application to long-period surface wave propagation , 1989 .

[67]  P. Spudich,et al.  Amplification of ground motion and waveform complexity in fault zones: examples from the San Andreas and Calaveras Faults , 1984 .

[68]  K. Yomogida Gaussian beams for surface waves in laterally slowly-varying media , 1985 .

[69]  D. Kosloff,et al.  Gaussian Beam Migration , 1989 .

[70]  M. Popov,et al.  Summation of Gaussian beams in a surface waveguide , 1983 .

[71]  N. R. Hill,et al.  Prestack Gaussian‐beam depth migration , 2001 .

[72]  Yannick Gabillet,et al.  Application of the Gaussian beam approach to sound propagation in the atmosphere: Theory and experiments , 1993 .

[73]  W. Beydoun,et al.  Range of validity of seismic ray and beam methods in general inhomogeneous media - II. A canonical problem , 1985 .

[74]  I-Tai Lu,et al.  Spectral aspects of the Gaussian beam method: reflection from a homogeneous half-space , 1987 .

[75]  J. Klauder Some Recent Results on Wave Equations, Path Integrals, and Semiclassical Approximations , 1987 .

[76]  C. Letrou,et al.  Alternative to Gabor's representation of plane aperture radiation , 1998 .

[77]  L. Felsen Geometrical theory of diffraction, evanescent waves, complex rays and Gaussian beams , 1984 .

[78]  V. Cormier Time‐domain modelling of PKIKP precursors for constraints on the heterogeneity in the lowermost mantle , 1995 .

[79]  L. B. Felsen,et al.  Systematic study of fields due to extended apertures by Gaussian beam discretization , 1989 .

[80]  A. Norris Complex point-source representation of real point sources and the Gaussian beam summation method , 1986 .

[81]  Joseph B. Keller,et al.  Complex Rays with an Application to Gaussian Beams , 1971 .

[82]  N. R. Hill,et al.  Salt-Flank Imaging Using Gaussian Beam Migration , 1991 .

[83]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[84]  R. Wu Gaussian beams, complex rays, and the analytic extension of the Green's function in smoothly inhomogeneous media , 1985 .

[85]  Michael B. Porter,et al.  Computational Ocean Acoustics , 1994 .

[86]  K. Aki,et al.  Amplitude and phase data inversions for phase velocity anomalies in the Pacific Ocean basin , 1987 .

[87]  V. Červený,et al.  Expansion of a plane wave into Gaussian beams , 1982 .

[88]  Y. Kravtsov,et al.  I Theory and Applications of Complex Rays , 1999 .

[89]  T. Melamed Phase-Space Beam Summation: a Local Spectrum Analysis of Time-Dependent Radiation , 1997 .

[90]  M. Weber,et al.  Computation of body-wave seismograms in absorbing 2-D media using the Gaussian beam method: comparison with exact methods , 1988 .

[91]  M. Popov A new method of computation of wave fields using Gaussian beams , 1982 .

[92]  Vlastislav Červený,et al.  Gaussian beams in two-dimensional elastic inhomogeneous media , 1983 .

[93]  T. Teng,et al.  Ten-second Love-wave propagation and strong ground motions , 1998 .

[94]  M. Weber Application of the Gaussian beam method in refraction seismology - Urach revisited , 1988 .

[95]  Ehud Heyman,et al.  Phase-space beam summation for time-harmonic radiation from large apertures , 1991 .

[96]  V. Červený,et al.  Gaussian beam synthetic seismograms , 1985 .

[97]  Wei-Jou Su,et al.  Effects of three-dimensional crustal structure on the estimated slip history and ground motion of the Loma Prieta earthquake , 1994 .

[98]  Jean Virieux,et al.  Seismic wave synthesis by Gaussian beam summation: A comparison with finite differences , 1987 .

[99]  M. Popov A new method of computing wave fields in the high-frequency approximation , 1982 .

[100]  Seismic coherent states and ray geometrical spreading , 2001 .

[101]  Jin Wang,et al.  Modeling of short-period surface-wave propagation in southern California , 1994 .

[102]  R. Nowack,et al.  Synthetic Seismograms and Wide-angle Seismic Attributes from the Gaussian Beam and Reflectivity Methods for Models with Interfaces and Velocity Gradients , 2002 .

[103]  Ehud Heyman,et al.  Phase-space beam summation for time-dependent radiation from large apertures: discretized parameterization , 1991 .

[104]  S. Raz,et al.  Gabor representation and aperture theory , 1986 .

[105]  Subduction zones‐their influence on traveltimes and amplitudes of P‐waves , 1990 .

[106]  Vlastislav Červený,et al.  Gaussian beams in elastic 2-D laterally varying layered structures , 1984 .

[107]  V. Červený,et al.  Synthetic body wave seismograms for three-dimensional laterally varying media , 1984 .

[108]  V. Červený,et al.  Seismic Ray Theory , 2001, Encyclopedia of Solid Earth Geophysics.