NeRFPlayer: A Streamable Dynamic Scene Representation with Decomposed Neural Radiance Fields

Visually exploring in a real-world 4D spatiotemporal space freely in VR has been a long-term quest. The task is especially appealing when only a few or even single RGB cameras are used for capturing the dynamic scene. To this end, we present an efficient framework capable of fast reconstruction, compact modeling, and streamable rendering. First, we propose to decompose the 4D spatiotemporal space according to temporal characteristics. Points in the 4D space are associated with probabilities of belonging to three categories: static, deforming, and new areas. Each area is represented and regularized by a separate neural field. Second, we propose a hybrid representations based feature streaming scheme for efficiently modeling the neural fields. Our approach, coined NeRFPlayer, is evaluated on dynamic scenes captured by single hand-held cameras and multi-camera arrays, achieving comparable or superior rendering performance in terms of quality and speed comparable to recent state-of-the-art methods, achieving reconstruction in 10 seconds per frame and interactive rendering. Project website: https://bit.ly/nerfplayer.

[1]  B. Recht,et al.  K-Planes: Explicit Radiance Fields in Space, Time, and Appearance , 2023, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Justin Johnson,et al.  HexPlane: A Fast Representation for Dynamic Scenes , 2023, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  J. Kopf,et al.  HyperReel: High-Fidelity 6-DoF Video with Ray-Conditioned Sampling , 2023, ArXiv.

[4]  Daeyoung Kim,et al.  D-TensoRF: Tensorial Radiance Fields for Dynamic Scenes , 2022, ArXiv.

[5]  Feng Wang,et al.  Mixed Neural Voxels for Fast Multi-view Video Synthesis , 2022, ArXiv.

[6]  Li Shen,et al.  Streaming Radiance Fields for 3D Video Synthesis , 2022, NeurIPS.

[7]  Bryan C. Russell,et al.  Monocular Dynamic View Synthesis: A Reality Check , 2022, NeurIPS.

[8]  A. Vedaldi,et al.  Neural Feature Fusion Fields: 3D Distillation of Self-Supervised 2D Image Representations , 2022, 2022 International Conference on 3D Vision (3DV).

[9]  J. Tenenbaum,et al.  Seeing 3D Objects in a Single Image via Self-Supervised Static-Dynamic Disentanglement , 2022, ArXiv.

[10]  M. Steinberger,et al.  AdaNeRF: Adaptive Sampling for Real-time Rendering of Neural Radiance Fields , 2022, ECCV.

[11]  S. Fidler,et al.  Variable Bitrate Neural Fields , 2022, SIGGRAPH.

[12]  A. Tagliasacchi,et al.  D$^2$NeRF: Self-Supervised Decoupling of Dynamic and Static Objects from a Monocular Video , 2022, 2205.15838.

[13]  V. Sitzmann,et al.  Decomposing NeRF for Editing via Feature Field Distillation , 2022, NeurIPS.

[14]  Mike Zheng Shou,et al.  DeVRF: Fast Deformable Voxel Radiance Fields for Dynamic Scenes , 2022, NeurIPS.

[15]  M. Nießner,et al.  Fast Dynamic Radiance Fields with Time-Aware Neural Voxels , 2022, SIGGRAPH Asia.

[16]  N. Yokoya,et al.  V4D: Voxel for 4D Novel View Synthesis , 2022, IEEE Transactions on Visualization and Computer Graphics.

[17]  Pratul P. Srinivasan,et al.  Gravitationally Lensed Black Hole Emission Tomography , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Hao Su,et al.  NeRFusion: Fusing Radiance Fields for Large-Scale Scene Reconstruction , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Andreas Geiger,et al.  TensoRF: Tensorial Radiance Fields , 2022, ECCV.

[20]  Jiakai Zhang,et al.  Fourier PlenOctrees for Dynamic Radiance Field Rendering in Real-time , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Pratul P. Srinivasan,et al.  Block-NeRF: Scalable Large Scene Neural View Synthesis , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  T. Müller,et al.  Instant neural graphics primitives with a multiresolution hash encoding , 2022, ACM Trans. Graph..

[23]  Ligang Liu,et al.  HeadNeRF: A Realtime NeRF-based Parametric Head Model , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Benjamin Recht,et al.  Plenoxels: Radiance Fields without Neural Networks , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  P. Abbeel,et al.  Zero-Shot Text-Guided Object Generation with Dream Fields , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Yu Sun,et al.  Recovery of continuous 3D refractive index maps from discrete intensity-only measurements using neural fields , 2021, Nature Machine Intelligence.

[27]  Jonathan T. Barron,et al.  NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Hwann-Tzong Chen,et al.  Direct Voxel Grid Optimization: Super-fast Convergence for Radiance Fields Reconstruction , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Federico Tombari,et al.  Neural Fields in Visual Computing and Beyond , 2021, Comput. Graph. Forum.

[30]  David Forsyth,et al.  DIVeR: Real-time and Accurate Neural Radiance Fields with Deterministic Integration for Volume Rendering , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Christian Theobalt,et al.  StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis , 2021, ICLR.

[32]  Yi Xu,et al.  NeuLF: Efficient Novel View Synthesis with Neural 4D Light Field , 2021, EGSR.

[33]  Zhenyi He,et al.  FoV-NeRF: Foveated Neural Radiance Fields for Virtual Reality , 2021, IEEE Transactions on Visualization and Computer Graphics.

[34]  Richard A. Newcombe,et al.  Neural 3D Video Synthesis from Multi-view Video , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Xinggang Wang,et al.  NeuSample: Neural Sample Field for Efficient View Synthesis , 2021, ArXiv.

[36]  Ronald Clark,et al.  TermiNeRF: Ray Termination Prediction for Efficient Neural Rendering , 2021, 2021 International Conference on 3D Vision (3DV).

[37]  Jonathan T. Barron,et al.  Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition , 2021, NeurIPS.

[38]  Andrea Vedaldi,et al.  NeuralDiff: Segmenting 3D objects that move in egocentric videos , 2021, 2021 International Conference on 3D Vision (3DV).

[39]  Hujun Bao,et al.  Learning Object-Compositional Neural Radiance Field for Editable Scene Rendering , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[40]  Jonathan T. Barron,et al.  HyperNeRF , 2021, ACM Trans. Graph..

[41]  Christian Theobalt,et al.  Neural actor , 2021, ACM Trans. Graph..

[42]  Simon Lucey,et al.  Neural Trajectory Fields for Dynamic Novel View Synthesis , 2021, ArXiv.

[43]  Hujun Bao,et al.  Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[44]  Jingyi Yu,et al.  Editable free-viewpoint video using a layered neural representation , 2021, ACM Trans. Graph..

[45]  Stephen Lin,et al.  Neural Articulated Radiance Field , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[46]  Adam R. Kosiorek,et al.  NeRF-VAE: A Geometry Aware 3D Scene Generative Model , 2021, ICML.

[47]  Jonathan T. Barron,et al.  Baking Neural Radiance Fields for Real-Time View Synthesis , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[48]  Yiyi Liao,et al.  KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[49]  Ren Ng,et al.  PlenOctrees for Real-time Rendering of Neural Radiance Fields , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[50]  Stephan J. Garbin,et al.  FastNeRF: High-Fidelity Neural Rendering at 200FPS , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[51]  Supasorn Suwajanakorn,et al.  NeX: Real-time View Synthesis with Neural Basis Expansion , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  C. R. A. Chaitanya,et al.  DONeRF: Towards Real‐Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks , 2021, Comput. Graph. Forum.

[53]  Yaser Sheikh,et al.  Mixture of volumetric primitives for efficient neural rendering , 2021, ACM Transactions on Graphics.

[54]  Helge Rhodin,et al.  A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose , 2021, NeurIPS.

[55]  Charles T. Loop,et al.  Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[56]  Hujun Bao,et al.  Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  Tanner Schmidt,et al.  STaR: Self-supervised Tracking and Reconstruction of Rigid Objects in Motion with Neural Rendering , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[58]  M. Zollhöfer,et al.  Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synthesis of a Dynamic Scene From Monocular Video , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[59]  Jiajun Wu,et al.  Neural Radiance Flow for 4D View Synthesis and Video Processing , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[60]  J. Kopf,et al.  Robust Consistent Video Depth Estimation , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[61]  Jonathan T. Barron,et al.  NeRD: Neural Reflectance Decomposition from Image Collections , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[62]  Jonathan T. Barron,et al.  NeRV: Neural Reflectance and Visibility Fields for Relighting and View Synthesis , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[63]  Gordon Wetzstein,et al.  AutoInt: Automatic Integration for Fast Neural Volume Rendering , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[64]  Jiajun Wu,et al.  pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[65]  Francesc Moreno-Noguer,et al.  D-NeRF: Neural Radiance Fields for Dynamic Scenes , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[66]  Zhengqi Li,et al.  Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[67]  Jonathan T. Barron,et al.  Nerfies: Deformable Neural Radiance Fields , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[68]  Changil Kim,et al.  Space-time Neural Irradiance Fields for Free-Viewpoint Video , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[69]  Wei Jiang,et al.  DeRF: Decomposed Radiance Fields , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[70]  Felix Heide,et al.  Neural Scene Graphs for Dynamic Scenes , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[71]  Alex Trevithick,et al.  GRF: Learning a General Radiance Field for 3D Representation and Rendering , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[72]  Jonathan T. Barron,et al.  NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[73]  H. Bao,et al.  Efficient Neural Radiance Fields with Learned Depth-Guided Sampling , 2021, ArXiv.

[74]  Gerard Pons-Moll,et al.  Neural Unsigned Distance Fields for Implicit Function Learning , 2020, NeurIPS.

[75]  Karol Myszkowski,et al.  X-Fields , 2020, ACM Trans. Graph..

[76]  Kyaw Zaw Lin,et al.  Neural Sparse Voxel Fields , 2020, NeurIPS.

[77]  Paul Debevec,et al.  Immersive light field video with a layered mesh representation , 2020, ACM Trans. Graph..

[78]  Andreas Geiger,et al.  GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis , 2020, NeurIPS.

[79]  Yaser Sheikh,et al.  4D Visualization of Dynamic Events From Unconstrained Multi-View Videos , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[80]  Richard Szeliski,et al.  Consistent video depth estimation , 2020, ACM Trans. Graph..

[81]  Pratul P. Srinivasan,et al.  NeRF , 2020, ECCV.

[82]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[83]  Andreas Geiger,et al.  Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[84]  Ravi Ramamoorthi,et al.  Local Light Field Fusion: Practical View Synthesis with Prescriptive Sampling Guidelines , 2019 .

[85]  Richard A. Newcombe,et al.  DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[86]  Sebastian Nowozin,et al.  Occupancy Networks: Learning 3D Reconstruction in Function Space , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[87]  Alvaro Collet,et al.  High-quality streamable free-viewpoint video , 2015, ACM Trans. Graph..

[88]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[89]  Richard Szeliski,et al.  High-quality video view interpolation using a layered representation , 2004, ACM Trans. Graph..

[90]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[91]  Hans-Peter Seidel,et al.  Free-viewpoint video of human actors , 2003, ACM Trans. Graph..

[92]  Leonard McMillan,et al.  A Real-Time Distributed Light Field Camera , 2002, Rendering Techniques.

[93]  Hans-Peter Seidel,et al.  On‐the‐Fly Processing of Generalized Lumigraphs , 2001, Comput. Graph. Forum.

[94]  Takeo Kanade,et al.  Virtualized Reality: Constructing Virtual Worlds from Real Scenes , 1997, IEEE Multim..

[95]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[96]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[97]  Ramesh C. Jain,et al.  Multiple perspective interactive video , 1995, Proceedings of the International Conference on Multimedia Computing and Systems.