Anatomical and chemical factors affecting tensile growth stress in Eucalyptus grandis plantations at different latitudes in Brazil

The key to using planted Eucalyptus as timber lies in controlling the characteristic high tensile growth stress that often causes serious processing defects in sawn logs and lumber. In the present study, we investigated variations in the lon- gitudinal released strain (RS) of surface growth stress in stems of Eucalyptus grandis W. Hill ex Maiden planted in a wide range of latitudes in Brazil and established relationships between RS measurements and anatomical and chemical factors. Cellulose and lignin content, RS, and the microfibril angle (MFA) of the middle layer of the secondary wall (S2 layer) dif- fered among latitudes. The increase in cellulose content and decrease in MFA were correlated with the contractive value of RS, which explained the higher tensile growth stress in stems from high-latitude plantations where higher cellulose content and lower MFA were observed. To reduce processing defects due to tensile growth stress, the factors controlling MFA val- ues and cellulose content must be identified. Resume : Pour utiliser l'eucalyptus comme bois d'œuvre, la cle consiste a maitriser les fortes contraintes de tension caracte- ristiques liees a la croissance et qui causent souvent de graves defauts lors de la transformation des billes et du bois scies. Dans cette etude, nous avons examine la variation des deformations longitudinales (DL) dues au relâchement des contraintes de croissance en surface dans le tronc d'Eucalyptus grandis W. Hill ex Maiden plante sous un vaste eventail de latitudes au Bresil et nous avons etabli des relations entre les mesures des DL et les facteurs anatomiques et chimiques. La teneur en cel- lulose et en lignine, la valeur des DL et l'angle des microfibrilles (AMF) de la paroi S2 variaient selon la latitude. L'aug- mentation de la teneur en cellulose et la diminution de l'AMF etaient correlees avec la valeur contractile des DL, ce qui explique que les contraintes de tension liees a la croissance sont plus importantes dans les tiges provenant de plantations dont la latitude est plus elevee, ou une teneur en cellulose plus elevee et un AMF plus faible ont ete observes. Pour reduire les defauts dus a la transformation, il faut identifier les facteurs qui determinent l'AMF et la teneur en cellulose. (Traduit par la Redaction)

[1]  J. Ilic,et al.  The Relationship between Longitudinal Growth Strain, Tree Form and Tension Wood at the Stem Periphery of Ten- to Eleven-Year-Old Eucalyptus globulus Labill. , 2003 .

[2]  Hiroyuki Yamamoto,et al.  Growth stress generation: a new mechanical model of the dimensional change of wood cells during maturation , 1999, Journal of Wood Science.

[3]  P. F. Trugilho,et al.  Relationships and estimates of longitudinal growth stress in Eucalyptus dunnii at different ages , 2008 .

[4]  Hiroyuki Yamamoto,et al.  Heart splitting at crosscutting of eucalypt logs , 2004, Journal of Wood Science.

[5]  Masato Yoshida,et al.  Effects of the lateral growth rate on wood quality parameters of Eucalyptus grandis from different latitudes in Brazil and Argentina , 2009 .

[6]  Masato Yoshida,et al.  Effect of the lateral growth rate on wood properties in fast-growing hardwood species , 2009, Journal of Wood Science.

[7]  R. K. Bamber The Origin of Growth Stresses: A Rebuttal , 1987 .

[8]  Hiromu Watanabe,et al.  Relationship between Released Strain and Growth Rate in 39 Year-Old Tectona grandis Planted in Indonesia , 2001 .

[9]  S. Ormarsson,et al.  Influence of growth stresses and material properties on distortion of sawn timber — numerical investigation , 2009, Annals of Forest Science.

[10]  Haruto Watanabe,et al.  A STUDY OF THE ORIGIN OF LONGITUDINAL GROWTH STRESSES IN TREE STEMS , 1967 .

[11]  I. Pearl,et al.  Studies on the chemistry of Aspenwood. XI. The Klason lignin determination as applied to Aspenwood with special reference to acid-soluble lignin , 1960 .

[12]  Masato Yoshida,et al.  Determining factor of xylem maturation in Eucalyptus grandis planted in different latitudes and climatic divisions of South America: a view based on fiber length , 2009 .

[13]  J. L. Yang,et al.  The impact of log-end splits and spring on sawn recovery of 32-year-old plantation Eucalyptus globulus Labill. , 2005, Holz als Roh- und Werkstoff.

[14]  J. D. Boyd,et al.  Tree growth stresses — Part V: Evidence of an origin in differentiation and lignification , 1972, Wood Science and Technology.

[15]  R. K. Bamber A GENERAL THEORY FOR THE ORIGIN OF GROWTH STRESSES IN REACTION WOOD: HOW TREES STAY UPRIGHT , 2001 .

[16]  Masato Yoshida,et al.  Generation process of growth stresses in cell walls II. Growth stresses in tension wood. , 1990 .

[17]  Masato Yoshida,et al.  Relationship between growth rate and growth stresses in Paraserianthes falcataria grown in Indonesia. , 2000 .

[18]  T. Alméras,et al.  Modelling anisotropic maturation strains in wood in relation to fibre boundary conditions, microstructure and maturation kinetics , 2005 .

[19]  Masato Yoshida,et al.  Growth stresses and strains in Acacia mangium , 1999 .

[20]  John C. F. Walker,et al.  Wood quality in artificially inclined 1-year-old trees of Eucalyptus regnans — differences in tension wood and opposite wood properties , 2011 .

[21]  Christian Cossalter,et al.  Fast-wood forestry : myths and realities , 2003 .

[22]  H. Yamamoto,et al.  Generation mechanism of growth stresses in wood cell walls: roles of lignin deposition and cellulose microfibril during cell wall maturation , 1998, Wood Science and Technology.

[23]  Hiroyuki Yamamoto,et al.  Role of the gelatinous layer (G-layer) on the origin of the physical properties of the tension wood of Acer sieboldianum , 2005, Journal of Wood Science.

[24]  Alexander Clark,et al.  Formation and Properties of Juvenile Wood in Southern Pines: A Synopsis , 2001 .

[25]  Marie Johansson,et al.  Finite element study of growth stress formation in wood and related distortion of sawn timber , 2009, Wood Science and Technology.

[26]  Hiroyuki Yamamoto,et al.  Growth stresses in tension wood: role of microfibrils and lignification , 1994 .

[27]  F. S. Malan,et al.  Wood Property Differences in South African Grown Eucalyptus grandis Trees of Different Growth Stress Intensity , 2009 .

[28]  Dr. Robert R. Archer,et al.  Growth Stresses and Strains in Trees , 1987, Springer Series in Wood Science.

[29]  J. Ilic,et al.  The relationship between longitudinal growth strain and the occurrence of gelatinous fibers in 10 and 11-year-old Eucalyptus globulus Labill. , 2003, Holz als Roh- und Werkstoff.

[30]  Takashi Okuyama,et al.  Crooking during lumbering due to residual stresses in the tree , 1979 .

[31]  D. Fengel,et al.  Wood: Chemistry, Ultrastructure, Reactions , 1983 .

[32]  J. Boyd Tree Growth Stresses , 1950 .