Structure-property relationships in the lead-free piezoceramic system K0.5Bi0.5TiO3 - BiMg0.5Ti0.5O3

[1]  S. J. Milne,et al.  Nanoscale compositional segregation and suppression of polar coupling in a relaxor ferroelectric , 2018, Acta Materialia.

[2]  A. W. Ashton,et al.  Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2 , 2017, Journal of applied crystallography.

[3]  R. Yimnirun,et al.  Phase transition and tolerance factor relationship of lead-free (Bi0.5K0.5)TiO3-Bi(Mg0.5Ti0.5)O3 piezoelectric ceramics , 2016 .

[4]  S. J. Milne,et al.  Lead-free piezoelectric K0.5Bi0.5TiO3–Bi(Mg0.5Ti0.5)O3 ceramics with depolarisation temperatures up to ~220 °C , 2015, Journal of Materials Science: Materials in Electronics.

[5]  W. Jo,et al.  Temperature Stability of Lead‐Free Niobate Piezoceramics with Engineered Morphotropic Phase Boundary , 2015 .

[6]  J. Rödel,et al.  Thermal Depolarization in the High‐Temperature Ternary Piezoelectric System xPbTiO3–yBiScO3–zBi(Ni1/2Ti1/2)O3 , 2015 .

[7]  S. J. Milne,et al.  Large Electromechanical Strain in Lead‐Free Binary System K0.5Bi0.5TiO3‐Bi(Mg0.5Ti0.5)O3 , 2014 .

[8]  J. Zhai,et al.  Phase transitional behavior and electric field-induced large strain in alkali niobate-modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free piezoceramics , 2014 .

[9]  Ke Wang,et al.  (K, Na)NbO3‐Based Lead‐Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges , 2013 .

[10]  Doru C. Lupascu,et al.  Temperature‐Insensitive (K,Na)NbO3‐Based Lead‐Free Piezoactuator Ceramics , 2013 .

[11]  H. Nagata,et al.  Fabrication and Electrical Properties of Multilayer Ceramic Actuator Using Lead-Free (Bi1/2K1/2)TiO3 , 2013 .

[12]  Jacob L. Jones,et al.  Origin of large recoverable strain in 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 near the ferroelectric-relaxor transition , 2013 .

[13]  Jacob L. Jones,et al.  _Local Structure, Pseudosymmetry, and Phase Transitions in Na{1/2}Bi_{1/2}TiO3_K{1/2}Bi_{1/2}TiO_{3} Ceramics , 2013 .

[14]  Si-Young Choi,et al.  Gigantic Electrostrain in Duplex Structured Alkaline Niobates , 2012 .

[15]  H. Nagata,et al.  Lead‐Free Piezoelectric Ceramic Based on (Bi1/2Na1/2)TiO3‐(Bi1/2K1/2)TiO3‐BaTiO3 Solid Solution , 2012 .

[16]  W. Jo,et al.  Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics , 2011 .

[17]  A. Bell,et al.  Phase diagram and structure-property relationships in the lead-free piezoelectric system: Na0.5K0.5NbO3-LiTaO3 , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[18]  Jingfeng Li,et al.  High Normalized Strain Obtained in Li-Modified (K,Na)NbO3 Lead-Free Piezoceramics , 2011 .

[19]  Yiping Guo,et al.  Large electric field-induced strain and antiferroelectric behavior in (1-x)(Na 0.5 Bi 0.5 )TiO 3 -x BaTiO 3 ceramics , 2011 .

[20]  Jacob L. Jones,et al.  Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoceramics , 2011 .

[21]  X. Tan,et al.  Domain structure-dielectric property relationship in lead-free (1−x)(Bi1/2Na1/2)TiO3xBaTiO3 ceramics , 2010 .

[22]  A. Bell,et al.  Electric-field-induced phase switching in the lead free piezoelectric potassium sodium bismuth titanate , 2010 .

[23]  Jacob L. Jones,et al.  Electric-field-induced phase-change behavior in (Bi0.5Na0.5)TiO3-BaTiO3-(K0.5Na0.5)NbO3: A combinatorial investigation , 2010 .

[24]  N. Setter,et al.  Structural complexity of (Na0.5Bi0.5)TiO3-BaTiO3 as revealed by Raman spectroscopy , 2010, 1003.0660.

[25]  J. Parker,et al.  Beamline I11 at Diamond: a new instrument for high resolution powder diffraction. , 2009, The Review of scientific instruments.

[26]  T. Comyn,et al.  Temperature stability of ([Na0.5K0.5NbO3]0.93–[LiTaO3]0.07) lead-free piezoelectric ceramics , 2009 .

[27]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[28]  Dragan Damjanovic,et al.  Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics , 2009, Journal of Applied Physics.

[29]  Hajime Nagata,et al.  Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions , 2008 .

[30]  Jingfeng Li,et al.  Piezoelectric and ferroelectric properties of Bi-compensated (Bi1/2Na1/2 )TiO3-(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics , 2008 .

[31]  Wook Jo,et al.  Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. I. Structure and room temperature properties , 2008 .

[32]  H. Nagata,et al.  Electrical Properties and Depolarization Temperature of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 Lead-free Piezoelectric Ceramics , 2006 .

[33]  Hajime Nagata,et al.  Ferroelectric and Piezoelectric Properties of (Bi1/2K1/2)TiO3 Ceramics , 2005 .

[34]  A. Steuwer,et al.  Micromechanics of residual stress and texture development due to poling in polycrystalline ferroelectric ceramics , 2005 .

[35]  Yiping Guo,et al.  Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics , 2004 .

[36]  Hajime Nagata,et al.  Large Piezoelectric Constant and High Curie Temperature of Lead-Free Piezoelectric Ceramic Ternary System Based on Bismuth Sodium Titanate-Bismuth Potassium Titanate-Barium Titanate near the Morphotropic Phase Boundary , 2003 .

[37]  D. Hall Review Nonlinearity in piezoelectric ceramics , 2001 .

[38]  D. Hall Rayleigh behaviour and the threshold field in ferroelectric ceramics , 1999 .

[39]  L. E. Cross,et al.  A monoclinic ferroelectric phase transition in the Pb(Zr1-xTix)O3 solid solution , 1999, cond-mat/9903007.

[40]  D. Hall,et al.  Field and temperature dependence of dielectric properties in -based piezoceramics , 1998 .

[41]  Tadashi Takenaka,et al.  (Bi1/2Na1/2)TiO3-BaTiO3 System for Lead-Free Piezoelectric Ceramics , 1991 .

[42]  Qing Xu,et al.  Structure and electrical properties of (Na0.5Bi0.5)1−xBaxTiO3 piezoelectric ceramics , 2008 .

[43]  R. Newnham,et al.  Materials for high temperature acoustic and vibration sensors: A review , 1994 .

[44]  W. J. Merz Piezoelectric Ceramics , 1972, Nature.