Structure-property relationships in the lead-free piezoceramic system K0.5Bi0.5TiO3 - BiMg0.5Ti0.5O3
暂无分享,去创建一个
Ge Wang | Jingfeng Li | C. Tang | S. J. Milne | D. Hall | F. Zhu | J. Forrester | Yizhe Li | A. Zeb | Z. Aslam
[1] S. J. Milne,et al. Nanoscale compositional segregation and suppression of polar coupling in a relaxor ferroelectric , 2018, Acta Materialia.
[2] A. W. Ashton,et al. Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2 , 2017, Journal of applied crystallography.
[3] R. Yimnirun,et al. Phase transition and tolerance factor relationship of lead-free (Bi0.5K0.5)TiO3-Bi(Mg0.5Ti0.5)O3 piezoelectric ceramics , 2016 .
[4] S. J. Milne,et al. Lead-free piezoelectric K0.5Bi0.5TiO3–Bi(Mg0.5Ti0.5)O3 ceramics with depolarisation temperatures up to ~220 °C , 2015, Journal of Materials Science: Materials in Electronics.
[5] W. Jo,et al. Temperature Stability of Lead‐Free Niobate Piezoceramics with Engineered Morphotropic Phase Boundary , 2015 .
[6] J. Rödel,et al. Thermal Depolarization in the High‐Temperature Ternary Piezoelectric System xPbTiO3–yBiScO3–zBi(Ni1/2Ti1/2)O3 , 2015 .
[7] S. J. Milne,et al. Large Electromechanical Strain in Lead‐Free Binary System K0.5Bi0.5TiO3‐Bi(Mg0.5Ti0.5)O3 , 2014 .
[8] J. Zhai,et al. Phase transitional behavior and electric field-induced large strain in alkali niobate-modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free piezoceramics , 2014 .
[9] Ke Wang,et al. (K, Na)NbO3‐Based Lead‐Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges , 2013 .
[10] Doru C. Lupascu,et al. Temperature‐Insensitive (K,Na)NbO3‐Based Lead‐Free Piezoactuator Ceramics , 2013 .
[11] H. Nagata,et al. Fabrication and Electrical Properties of Multilayer Ceramic Actuator Using Lead-Free (Bi1/2K1/2)TiO3 , 2013 .
[12] Jacob L. Jones,et al. Origin of large recoverable strain in 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 near the ferroelectric-relaxor transition , 2013 .
[13] Jacob L. Jones,et al. _Local Structure, Pseudosymmetry, and Phase Transitions in Na{1/2}Bi_{1/2}TiO3_K{1/2}Bi_{1/2}TiO_{3} Ceramics , 2013 .
[14] Si-Young Choi,et al. Gigantic Electrostrain in Duplex Structured Alkaline Niobates , 2012 .
[15] H. Nagata,et al. Lead‐Free Piezoelectric Ceramic Based on (Bi1/2Na1/2)TiO3‐(Bi1/2K1/2)TiO3‐BaTiO3 Solid Solution , 2012 .
[16] W. Jo,et al. Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics , 2011 .
[17] A. Bell,et al. Phase diagram and structure-property relationships in the lead-free piezoelectric system: Na0.5K0.5NbO3-LiTaO3 , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[18] Jingfeng Li,et al. High Normalized Strain Obtained in Li-Modified (K,Na)NbO3 Lead-Free Piezoceramics , 2011 .
[19] Yiping Guo,et al. Large electric field-induced strain and antiferroelectric behavior in (1-x)(Na 0.5 Bi 0.5 )TiO 3 -x BaTiO 3 ceramics , 2011 .
[20] Jacob L. Jones,et al. Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoceramics , 2011 .
[21] X. Tan,et al. Domain structure-dielectric property relationship in lead-free (1−x)(Bi1/2Na1/2)TiO3xBaTiO3 ceramics , 2010 .
[22] A. Bell,et al. Electric-field-induced phase switching in the lead free piezoelectric potassium sodium bismuth titanate , 2010 .
[23] Jacob L. Jones,et al. Electric-field-induced phase-change behavior in (Bi0.5Na0.5)TiO3-BaTiO3-(K0.5Na0.5)NbO3: A combinatorial investigation , 2010 .
[24] N. Setter,et al. Structural complexity of (Na0.5Bi0.5)TiO3-BaTiO3 as revealed by Raman spectroscopy , 2010, 1003.0660.
[25] J. Parker,et al. Beamline I11 at Diamond: a new instrument for high resolution powder diffraction. , 2009, The Review of scientific instruments.
[26] T. Comyn,et al. Temperature stability of ([Na0.5K0.5NbO3]0.93–[LiTaO3]0.07) lead-free piezoelectric ceramics , 2009 .
[27] W. Jo,et al. Perspective on the Development of Lead‐free Piezoceramics , 2009 .
[28] Dragan Damjanovic,et al. Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics , 2009, Journal of Applied Physics.
[29] Hajime Nagata,et al. Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions , 2008 .
[30] Jingfeng Li,et al. Piezoelectric and ferroelectric properties of Bi-compensated (Bi1/2Na1/2 )TiO3-(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics , 2008 .
[31] Wook Jo,et al. Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. I. Structure and room temperature properties , 2008 .
[32] H. Nagata,et al. Electrical Properties and Depolarization Temperature of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 Lead-free Piezoelectric Ceramics , 2006 .
[33] Hajime Nagata,et al. Ferroelectric and Piezoelectric Properties of (Bi1/2K1/2)TiO3 Ceramics , 2005 .
[34] A. Steuwer,et al. Micromechanics of residual stress and texture development due to poling in polycrystalline ferroelectric ceramics , 2005 .
[35] Yiping Guo,et al. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics , 2004 .
[36] Hajime Nagata,et al. Large Piezoelectric Constant and High Curie Temperature of Lead-Free Piezoelectric Ceramic Ternary System Based on Bismuth Sodium Titanate-Bismuth Potassium Titanate-Barium Titanate near the Morphotropic Phase Boundary , 2003 .
[37] D. Hall. Review Nonlinearity in piezoelectric ceramics , 2001 .
[38] D. Hall. Rayleigh behaviour and the threshold field in ferroelectric ceramics , 1999 .
[39] L. E. Cross,et al. A monoclinic ferroelectric phase transition in the Pb(Zr1-xTix)O3 solid solution , 1999, cond-mat/9903007.
[40] D. Hall,et al. Field and temperature dependence of dielectric properties in -based piezoceramics , 1998 .
[41] Tadashi Takenaka,et al. (Bi1/2Na1/2)TiO3-BaTiO3 System for Lead-Free Piezoelectric Ceramics , 1991 .
[42] Qing Xu,et al. Structure and electrical properties of (Na0.5Bi0.5)1−xBaxTiO3 piezoelectric ceramics , 2008 .
[43] R. Newnham,et al. Materials for high temperature acoustic and vibration sensors: A review , 1994 .
[44] W. J. Merz. Piezoelectric Ceramics , 1972, Nature.