A nonconvex separation property and some applications

In this paper we proved a nonconvex separation property for general sets which coincides with the Hahn-Banach separation theorem when sets are convexes. Properties derived from the main result are used to compute the subgradient set to the distance function in special cases and they are also applied to extending the Second Welfare Theorem in economics and proving the existence of singular multipliers in Optimization.

[1]  H. Attouch Variational convergence for functions and operators , 1984 .

[2]  Boris S. Mordukhovich,et al.  The extremal principle and its applications to optimization and economics , 2001 .

[3]  T. Zolezzi,et al.  Well-Posed Optimization Problems , 1993 .

[4]  Boris S. Mordukhovich,et al.  Nonconvex differential calculus for infinite-dimensional multifunctions , 1996 .

[5]  B. Mordukhovich,et al.  Extremal characterizations of asplund spaces , 1996 .

[6]  A. Ioffe Approximate subdifferentials and applications 3: the metric theory , 1989 .

[7]  A. Ioffe Approximate subdifferentials and applications II , 1986 .

[8]  L. Thibault,et al.  Verifiable conditions for openness and regularity of multivalued mappings in Banach spaces , 1995 .

[9]  B. Mordukhovich Maximum principle in the problem of time optimal response with nonsmooth constraints PMM vol. 40, n≗ 6, 1976, pp. 1014-1023 , 1976 .

[10]  Jonathan M. Borwein,et al.  A nonconvex separation property in Banach spaces , 1998, Math. Methods Oper. Res..

[11]  R. Cominetti Metric regularity, tangent sets, and second-order optimality conditions , 1990 .

[12]  Adrian Smith,et al.  Bayesian Assessment of Network Reliability , 1998, SIAM Rev..

[13]  Alexander Shapiro,et al.  Optimization Problems with Perturbations: A Guided Tour , 1998, SIAM Rev..

[14]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[15]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[16]  Bernard Cornet,et al.  Valuation equilibrium and Pareto optimum in non-convex economies , 1988 .

[17]  A. Ioffe Approximate subdifferentials and applications. I. The finite-dimensional theory , 1984 .

[18]  S. M. Robinson Stability Theory for Systems of Inequalities, Part II: Differentiable Nonlinear Systems , 1976 .

[19]  R. Rockafellar The theory of subgradients and its applications to problems of optimization : convex and nonconvex functions , 1981 .

[20]  B. Mordukhovich,et al.  Nonsmooth sequential analysis in Asplund spaces , 1996 .

[21]  B. Mordukhovich Generalized Differential Calculus for Nonsmooth and Set-Valued Mappings , 1994 .

[22]  L. Thibault,et al.  Metric regularity for strongly compactly Lipschitzian mappings , 1995 .

[23]  K. Arrow,et al.  General Competitive Analysis , 1971 .

[24]  F. Clarke Generalized gradients and applications , 1975 .

[25]  R. Rockafellar Extensions of subgradient calculus with applications to optimization , 1985 .