Prediction of the theoretical capacity of non-aqueous lithium-air batteries

[1]  Ji‐Guang Zhang,et al.  Effects of Electrolyte Salts on the Performance of Li–O2 Batteries , 2013 .

[2]  Bryan D. McCloskey,et al.  On the Mechanism of Nonaqueous Li–O2 Electrochemistry on C and Its Kinetic Overpotentials: Some Implications for Li–Air Batteries , 2012 .

[3]  Ji‐Guang Zhang,et al.  The stability of organic solvents and carbon electrode in nonaqueous Li-O2 batteries , 2012 .

[4]  G. Cui,et al.  Oxygen-enriched carbon material for catalyzing oxygen reduction towards hybrid electrolyte Li-air battery , 2012 .

[5]  C. Cantau,et al.  Elaboration and Characterization of a Free Standing LiSICON Membrane for Aqueous Lithium-Air Battery , 2012 .

[6]  Kristina Edström,et al.  Ether Based Electrolyte, LiB(CN)4 Salt and Binder Degradation in the Li-O2 Battery Studied by Hard X-ray Photoelectron Spectroscopy (HAXPES) , 2012 .

[7]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[8]  P. Bruce,et al.  The pursuit of rechargeable non-aqueous lithium–oxygen battery cathodes , 2012 .

[9]  Haoshen Zhou,et al.  Electrochemical Performance of Solid‐State Lithium–Air Batteries Using Carbon Nanotube Catalyst in the Air Electrode , 2012 .

[10]  Hun‐Gi Jung,et al.  An improved high-performance lithium-air battery. , 2012, Nature chemistry.

[11]  Dan Xu,et al.  Novel DMSO-based electrolyte for high performance rechargeable Li-O2 batteries. , 2012, Chemical communications.

[12]  Youngsik Kim,et al.  Effects of aqueous electrolytes on the voltage behaviors of rechargeable Li-air batteries , 2012 .

[13]  Z. Wen,et al.  Mesoporous carbon nitride loaded with Pt nanoparticles as a bifunctional air electrode for rechargeable lithium-air battery , 2012, Journal of Solid State Electrochemistry.

[14]  Jitendra Kumar,et al.  Mesoporous nitrogen-doped carbon-glass ceramic cathodes for solid-state lithium-oxygen batteries. , 2012, ACS applied materials & interfaces.

[15]  Hubert A. Gasteiger,et al.  Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. , 2011, Journal of the American Chemical Society.

[16]  W. Bennett,et al.  Hierarchically porous graphene as a lithium-air battery electrode. , 2011, Nano letters.

[17]  Keith Scott,et al.  Selection of oxygen reduction catalysts for rechargeable lithium–air batteries—Metal or oxide? , 2011 .

[18]  P. He,et al.  Titanium nitride catalyst cathode in a Li-air fuel cell with an acidic aqueous solution. , 2011, Chemical communications.

[19]  Yang Shao-Horn,et al.  The discharge rate capability of rechargeable Li–O2 batteries , 2011 .

[20]  Jim P. Zheng,et al.  α-MnO2/Carbon Nanotube/Carbon Nanofiber Composite Catalytic Air Electrodes for Rechargeable Lithium-air Batteries , 2011 .

[21]  Nancy J. Dudney,et al.  Current Collectors for Rechargeable Li-Air Batteries , 2011 .

[22]  Haoshen Zhou,et al.  Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. , 2011, ACS nano.

[23]  B. Kumar,et al.  Electrochemical performance of highly mesoporous nitrogen doped carbon cathode in lithium-oxygen batteries , 2011 .

[24]  Eugene A. Goodilin,et al.  Protected anodes for lithium-air batteries , 2011 .

[25]  Petru Andrei,et al.  The Theoretical Energy Densities of Dual-Electrolytes Rechargeable Li-Air and Li-Air Flow Batteries , 2011 .

[26]  T. Ishihara,et al.  Mesoporous β-MnO2 Air Electrode Modified with Pd for Rechargeability in Lithium-Air Battery , 2011 .

[27]  Ping He,et al.  A Li-air fuel cell with recycle aqueous electrolyte for improved stability , 2010 .

[28]  Won Il Cho,et al.  Electrochemical Performances of Lithium-air Cell with Carbon Materials , 2010 .

[29]  T. Ishihara,et al.  Pd / MnO2 Air Electrode Catalyst for Rechargeable Lithium/Air Battery , 2010 .

[30]  Paul C. Johnson,et al.  A study on lithium/air secondary batteries—Stability of NASICON-type glass ceramics in acid solutions , 2010 .

[31]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[32]  Ji‐Guang Zhang,et al.  Ambient operation of Li/Air batteries , 2010 .

[33]  N. Imanishi,et al.  Water-Stable Lithium Electrode and Its Application in Aqueous Lithium/Air Secondary Batteries , 2010 .

[34]  Binod Kumar,et al.  Cathodes for Solid-State Lithium–Oxygen Cells: Roles of Nasicon Glass-Ceramics , 2010 .

[35]  Zhen Wei,et al.  Polarization of Oxygen Electrode in Rechargeable Lithium Oxygen Batteries , 2010 .

[36]  Ji‐Guang Zhang,et al.  Hybrid Air-Electrode for Li/Air Batteries , 2010 .

[37]  Jeffrey Read,et al.  Discharge characteristic of a non-aqueous electrolyte Li/O2 battery , 2010 .

[38]  Ruoshi Li,et al.  Novel composite polymer electrolyte for lithium air batteries , 2010 .

[39]  Tao Zhang,et al.  Stability of a Water-Stable Lithium Metal Anode for a Lithium–Air Battery with Acetic Acid–Water Solutions , 2010 .

[40]  Tao Zhang,et al.  A novel high energy density rechargeable lithium/air battery. , 2009, Chemical communications.

[41]  Haoshen Zhou,et al.  A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy , 2010 .

[42]  K. M. Abraham,et al.  A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery (Postprint) , 2010 .

[43]  N. Sammes,et al.  Water-Stable Lithium Anode with the Three-Layer Construction for Aqueous Lithium–Air Secondary Batteries , 2009 .

[44]  Jim P. Zheng,et al.  Theoretical Energy Density of Li–Air Batteries , 2008 .

[45]  M. Salomon,et al.  Li-air batteries: A classic example of limitations owing to solubilities , 2007 .

[46]  Jeffrey Read,et al.  Characterization of the Lithium/Oxygen Organic Electrolyte Battery , 2002 .

[47]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .