Early investigation of a novel SI306 theranostic prodrug for glioblastoma treatment

Glioblastoma multiforme (GBM) is one of the most aggressive malignancies with a high recurrence rate and poor prognosis. Theranostic, combining therapeutic and diagnostic approaches, arises as a successful strategy to improve patient outcomes through personalized medicine.

[1]  Awanish Kumar,et al.  Paclitaxel Delivery to the Brain for Glioblastoma Treatment , 2023, International journal of molecular sciences.

[2]  F. Musumeci,et al.  Biological Evaluation and In Vitro Characterization of ADME Profile of In-House Pyrazolo[3,4-d]pyrimidines as Dual Tyrosine Kinase Inhibitors Active against Glioblastoma Multiforme , 2023, Pharmaceutics.

[3]  I. Boldyrev,et al.  Intranasal Delivery of Liposomes to Glioblastoma by Photostimulation of the Lymphatic System , 2022, Pharmaceutics.

[4]  F. Musumeci,et al.  Anti-Survival Effect of SI306 and Its Derivatives on Human Glioblastoma Cells , 2022, Pharmaceutics.

[5]  Arifudin Achmad,et al.  The Chemical Scaffold of Theranostic Radiopharmaceuticals: Radionuclide, Bifunctional Chelator, and Pharmacokinetics Modifying Linker , 2022, Molecules.

[6]  I. Baranowska-Bosiacka,et al.  Epidemiology of Glioblastoma Multiforme–Literature Review , 2022, Cancers.

[7]  Y. Boumber,et al.  Signaling pathways and therapeutic approaches in glioblastoma multiforme (Review) , 2022, International journal of oncology.

[8]  D. Giakoumettis,et al.  Molecular Pathogenesis of Glioblastoma in Adults and Future Perspectives: A Systematic Review , 2022, International journal of molecular sciences.

[9]  M. Bottone,et al.  Editorial: Brain Cancers: New Perspectives and Therapies , 2022, Frontiers in Neuroscience.

[10]  J. Blay,et al.  Dabrafenib plus trametinib in patients with BRAFV600E-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial , 2021, The Lancet Oncology.

[11]  A. Heimberger,et al.  New Approaches to Glioblastoma. , 2021, Annual review of medicine.

[12]  S. Schenone,et al.  Pyrazolo[3,4-d]pyrimidine Tyrosine Kinase Inhibitors Induce Oxidative Stress in Patient-Derived Glioblastoma Cells , 2021, Brain sciences.

[13]  A. Oronsky,et al.  A Review of Newly Diagnosed Glioblastoma , 2021, Frontiers in Oncology.

[14]  C. Buchpiguel,et al.  Theranostics in Nuclear Medicine: Emerging and Re-emerging Integrated Imaging and Therapies in the Era of Precision Oncology. , 2020, Radiographics : a review publication of the Radiological Society of North America, Inc.

[15]  H. Friedman,et al.  Management of glioblastoma: State of the art and future directions. , 2020, CA: a cancer journal for clinicians.

[16]  D. Barilà,et al.  SRC Kinase in Glioblastoma: News from an Old Acquaintance , 2020, Cancers.

[17]  S. Schenone,et al.  Src Inhibitors Pyrazolo[3,4-d]pyrimidines, Si306 and Pro-Si306, Inhibit Focal Adhesion Kinase and Suppress Human Glioblastoma Invasion In Vitro and In Vivo , 2020, Cancers.

[18]  C. Zamperini,et al.  DDX3X inhibitors, an effective way to overcome HIV-1 resistance targeting host proteins. , 2020, European journal of medicinal chemistry.

[19]  M. Vannier,et al.  Imaging of intranasal drug delivery to the brain. , 2020, American journal of nuclear medicine and molecular imaging.

[20]  F. Rösch,et al.  The Use of the Macrocyclic Chelator DOTA in Radiochemical Separations , 2020 .

[21]  Rajendran J C Bose,et al.  Intranasal delivery of targeted polyfunctional gold-iron oxide nanoparticles loaded with therapeutic microRNAs for combined theranostic multimodality imaging and presensitization of glioblastoma to temozolomide. , 2019, Biomaterials.

[22]  K. Skelding,et al.  Glioblastoma Multiforme: An Overview of Emerging Therapeutic Targets , 2019, Front. Oncol..

[23]  G. Reifenberger,et al.  Molecular targeted therapy of glioblastoma. , 2019, Cancer treatment reviews.

[24]  C. Zamperini,et al.  A New Strategy for Glioblastoma Treatment: In Vitro and In Vivo Preclinical Characterization of Si306, a Pyrazolo[3,4-d]Pyrimidine Dual Src/P-Glycoprotein Inhibitor , 2019, Cancers.

[25]  Michelle M. Kim,et al.  Bevacizumab and Glioblastoma: Past, Present, and Future Directions , 2018, Cancer journal.

[26]  J. Ballinger Theranostic radiopharmaceuticals: established agents in current use. , 2018, The British journal of radiology.

[27]  F. Musumeci,et al.  Prodrugs of Pyrazolo[3,4-d]pyrimidines: From Library Synthesis to Evaluation as Potential Anticancer Agents in an Orthotopic Glioblastoma Model. , 2017, Journal of medicinal chemistry.

[28]  C. Zamperini,et al.  Suppression of SRC Signaling Is Effective in Reducing Synergy between Glioblastoma and Stromal Cells , 2016, Molecular Cancer Therapeutics.

[29]  A. Giordano,et al.  SRC Family Kinase Inhibition Through a New Pyrazolo[3,4‐d]Pyrimidine Derivative as a Feasible Approach for Glioblastoma Treatment , 2015, Journal of cellular biochemistry.

[30]  T. Maheswaran,et al.  Theranostics: A treasured tailor for tomorrow , 2014, Journal of pharmacy & bioallied sciences.

[31]  M. Radi,et al.  Pyrazolo[3,4-d]pyrimidine Prodrugs: Strategic Optimization of the Aqueous Solubility of Dual Src/Abl Inhibitors. , 2013, ACS medicinal chemistry letters.

[32]  A. Bharucha,et al.  Synthesis of a DOTA (Gd3+)-conjugate of proton-pump inhibitor pantoprazole for gastric wall imaging studies. , 2013, Bioorganic & medicinal chemistry letters.

[33]  J. Sarkaria,et al.  Active Efflux of Dasatinib from the Brain Limits Efficacy against Murine Glioblastoma: Broad Implications for the Clinical Use of Molecularly Targeted Agents , 2012, Molecular Cancer Therapeutics.

[34]  Sanjiv S Gambhir,et al.  A molecular imaging primer: modalities, imaging agents, and applications. , 2012, Physiological reviews.

[35]  M. Radi,et al.  Design, synthesis, biological activity, and ADME properties of pyrazolo[3,4-d]pyrimidines active in hypoxic human leukemia cells: a lead optimization study. , 2011, Journal of medicinal chemistry.

[36]  M. Ahluwalia,et al.  Targeting SRC in glioblastoma tumors and brain metastases: rationale and preclinical studies. , 2010, Cancer letters.

[37]  N. Shaik,et al.  P-glycoprotein and Breast Cancer Resistance Protein Influence Brain Distribution of Dasatinib , 2009, Journal of Pharmacology and Experimental Therapeutics.

[38]  L. Hanson,et al.  Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease , 2008, BMC Neuroscience.

[39]  D. Cheresh,et al.  Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis , 2004, The Journal of cell biology.

[40]  A. Aguzzi,et al.  Development and malignant progression of astrocytomas in GFAP-v-src transgenic mice , 1997, Oncogene.

[41]  T. Golub,et al.  Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy , 2009, Nature Biotechnology.