Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

B R U C E E . L O G A N , * , † D O U G L A S C A L L , † S H A O A N C H E N G , † H U B E R T U S V . M . H A M E L E R S , ‡ T O M H . J . A . S L E U T E L S , ‡ , § A D R I A A N W . J E R E M I A S S E , ‡ , § A N D R E N É A . R O Z E N D A L | Hydrogen Energy Center, and Department of Civil and Environmental Engineering, 212 Sackett Building, Penn State University, University Park, Pennsylvania 16802, Sub-Department of Environmental Technology, Wageningen University, Bomenweg 2, P.O. Box 8129, 6700 EV Wageningen, The Netherlands, Wetsus, Centre for Sustainable Water Technology, Agora 1, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands, and Advanced Water Management Centre (AWMC), The University of Queensland, Qld 4072, Australia

[1]  John A. Turner,et al.  Sustainable Hydrogen Production , 2004, Science.

[2]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[3]  Bryce J. Stokes,et al.  Biomass as Feedstock for A Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply , 2005 .

[4]  Patrick C. Hallenbeck,et al.  Biological hydrogen production; fundamentals and limiting processes , 2002 .

[5]  G. Gil,et al.  Operational parameters affecting the performannce of a mediator-less microbial fuel cell. , 2003, Biosensors & bioelectronics.

[6]  Godfrey Kyazze,et al.  Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress , 2007 .

[7]  A Kornberg,et al.  Science or Technology* , 1980, Journal of dental research.

[8]  Bruce E. Logan,et al.  AMMONIA TREATMENT OF CARBON CLOTH ANODES TO ENHANCE POWER GENERATION OF MICROBIAL FUEL CELLS , 2007 .

[9]  W Verstraete,et al.  Combining biocatalyzed electrolysis with anaerobic digestion. , 2008, Water science and technology : a journal of the International Association on Water Pollution Research.

[10]  Willy Verstraete,et al.  Biological denitrification in microbial fuel cells. , 2007, Environmental science & technology.

[11]  Sangeun Oh,et al.  The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. , 2003, Environmental science & technology.

[12]  Duu-Jong Lee,et al.  Electrochemically Assisted Biohydrogen Production from Acetate , 2008 .

[13]  Jurg Keller,et al.  Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells , 2007 .

[14]  David M. Bagley,et al.  Experimental Determination of Energy Content of Unknown Organics in Municipal Wastewater Streams , 2004 .

[15]  Zhongtang Yu,et al.  Electricity generation from cellulose by rumen microorganisms in microbial fuel cells , 2007, Biotechnology and bioengineering.

[16]  Boris Tartakovsky,et al.  Biocatalyzed hydrogen production in a continuous flow microbial fuel cell with a gas phase cathode , 2008 .

[17]  H. Hamelers,et al.  Principle and perspectives of hydrogen production through biocatalyzed electrolysis , 2006 .

[18]  H. Hamelers,et al.  Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater. , 2008, Water science and technology : a journal of the International Association on Water Pollution Research.

[19]  E. E. L O G A N,et al.  Electrochemically Assisted Microbial Production of Hydrogen from Acetate , 2022 .

[20]  Hong Liu,et al.  Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR) , 2007 .

[21]  Bruce E Logan,et al.  Sustainable and efficient biohydrogen production via electrohydrogenesis , 2007, Proceedings of the National Academy of Sciences.

[22]  W. Verstraete,et al.  Microbial fuel cells: novel biotechnology for energy generation. , 2005, Trends in biotechnology.

[23]  Bruce E. Logan,et al.  Increased performance of single-chamber microbial fuel cells using an improved cathode structure , 2006 .

[24]  R. Thauer,et al.  Energy conservation in chemotrophic anaerobic bacteria , 1977, Bacteriological reviews.

[25]  Gimenez Juan Casado,et al.  A process for producing hydrogen. , 2004 .

[26]  H. Hamelers,et al.  Effects of membrane cation transport on pH and microbial fuel cell performance. , 2006, Environmental science & technology.

[27]  J. Ivy,et al.  Summary of Electrolytic Hydrogen Production: Milestone Completion Report , 2004 .

[28]  Zhiyong Ren,et al.  Electricity production from cellulose in a microbial fuel cell using a defined binary culture. , 2007, Environmental science & technology.

[29]  Michael C. Flickinger,et al.  Encyclopedia of bioprocess technology : fermentation, biocatalysis, and bioseparation , 1999 .

[30]  E. E. L O G A N,et al.  Power Generation Using Different Cation, Anion, and Ultrafiltration Membranes in Microbial Fuel Cells , 2022 .

[31]  Hong Liu,et al.  Hydrogen production using single-chamber membrane-free microbial electrolysis cells. , 2008, Water research.

[32]  B. Logan,et al.  Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. , 2007, Environmental science & technology.

[33]  Pierre Millet,et al.  Preparation of new solid polymer electrolyte composites for water electrolysis , 1990 .

[34]  C. Buisman,et al.  Towards practical implementation of bioelectrochemical wastewater treatment. , 2008, Trends in biotechnology.

[35]  C. Thurston,et al.  Microbial fuel-cells , 1993 .

[36]  Hardy Temmink,et al.  A new reactor concept for sludge reduction using aquatic worms. , 2006, Water research.

[37]  Zhiguo Yuan,et al.  Microbial fuel cells for simultaneous carbon and nitrogen removal. , 2008, Water research.

[38]  M. Moo-young,et al.  Environmental Biotechnology: Principles and Applications , 2010 .

[39]  Hong Liu,et al.  Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. , 2008, Environmental science & technology.

[40]  Tong Zhang,et al.  Phototrophic hydrogen production from acetate and butyrate in wastewater , 2005 .

[41]  E. E. L O G A N Microbial Fuel Cells : Methodology and Technology † , 2022 .

[42]  H. Hamelers,et al.  Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. , 2007, Water research.

[43]  T. Richard,et al.  Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems. , 2007, Environmental science & technology.

[44]  B. Logan,et al.  Electricity-producing bacterial communities in microbial fuel cells. , 2006, Trends in microbiology.

[45]  E. E. L O G A N,et al.  Power Densities Using Different Cathode Catalysts (Pt and CoTMPP) and Polymer Binders (Nafion and PTFE) in Single Chamber Microbial Fuel Cells , 2022 .

[46]  P. Mccarty,et al.  Bioassay for monitoring biochemical methane potential and anaerobic toxicity , 1979 .

[47]  Sang-Eun Oh,et al.  Biological hydrogen production measured in batch anaerobic respirometers. , 2002, Environmental science & technology.

[48]  Bruce E Logan,et al.  Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. , 2008, Environmental science & technology.

[49]  Z. Ren,et al.  Characterization of the cellulolytic and hydrogen‐producing activities of six mesophilic Clostridium species , 2007, Journal of applied microbiology.

[50]  Bruce E Logan,et al.  Extracting hydrogen and electricity from renewable resources. , 2004, Environmental science & technology.

[51]  J. N. B U I S M A N,et al.  Hydrogen Production with a Microbial Biocathode , 2007 .

[52]  Hong Liu,et al.  Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. , 2005, Environmental science & technology.