Recent developments in garnet based solid state electrolytes for thin film batteries

Abstract This paper reviews the current status of, and new progress in, the field of solid state electrolytes (SSE) for lithium ion batteries. In addition to a review of current technologies, we are also presenting our novel results on pulsed laser processing of garnet based SSEs, specifically Li7La3Zr2O12 (LLZO). LLZO powders with a tetragonal structure were prepared by a sol–gel technique, then a pulsed laser annealing process was employed to covert the powders to cubic LLZO without any loss of lithium. The tetragonal LLZO exhibited a Li ion conductivity of 1.8 × 10−7 S/cm, whereas the laser annealed cubic LLZO showed a Li ion conductivity of 1.0×10−4 S/cm at room temperature. A systematic study of the effect of pulsed laser annealing (PLA) on the crystal structure, morphology, composition, and ionic conductivity of LLZO was performed via X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS) measurements. These results demonstrate that PLA is a powerful processing technique for synthesizing the high ionic conductivity cubic phase of LLZO at relatively low temperatures, as compared to conventional methods.

[1]  C. Day,et al.  A new crystalline LiPON electrolyte: Synthesis, properties, and electronic structure , 2013 .

[2]  Jeff Sakamoto,et al.  Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12 , 2012 .

[3]  K. Arbi,et al.  Dependence of Ionic Conductivity on Composition of Fast Ionic Conductors Li1+xTi2-xAlx(PO4)3, 0 ≤ x ≤ 0.7. A Parallel NMR and Electric Impedance Study , 2002 .

[4]  Zongping Shao,et al.  Combustion synthesis of high-performance Li4Ti5O12 for secondary Li-ion battery , 2009 .

[5]  N. Dudney,et al.  Properties of lithium phosphorus oxynitride (Lipon) for 3D solid-state lithium batteries , 2010 .

[6]  B. Pecquenard,et al.  Investigation of the local structure of LiPON thin films to better understand the role of nitrogen on their performance , 2011 .

[7]  Hui Xie,et al.  Lithium Distribution in Aluminum-Free Cubic Li7La3Zr2O12 , 2011 .

[8]  J. Goodenough,et al.  Use of B2O3 to improve Li+-ion transport in LiTi2(PO4)3-based ceramics , 2012 .

[9]  T. Yoshida,et al.  Compatibility of Li7La3Zr2O12 Solid Electrolyte to All-Solid-State Battery Using Li Metal Anode , 2010 .

[10]  Ying Jin,et al.  Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method , 2011 .

[11]  K. Nagata,et al.  All solid battery with phosphate compounds made through sintering process , 2007 .

[12]  Martin Fisch,et al.  Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor. , 2011, Inorganic chemistry.

[13]  S. C. Ammal,et al.  Obtaining mixed ionic/electronic conductivity in perovskite oxides in a reducing environment: A computational prediction for doped SrTiO3 , 2012 .

[14]  S. Shiraki,et al.  Growth processes of lithium titanate thin films deposited by using pulsed laser deposition , 2012 .

[15]  J. Carru,et al.  Structure, microstructure and ionic conductivity of the solid solution LiTi2−xSnx(PO4)3 , 2012 .

[16]  Paul C. Johnson,et al.  Effect of microstructure on the conductivity of a NASICON-type lithium ion conductor , 2011 .

[17]  A. Tiwari,et al.  Synthesis of Cubic Phase Li7La3Zr2O12 Electrolyte for Solid-State Lithium-Ion Batteries , 2012 .

[18]  E. Maxie,et al.  Lipon thin films grown by plasma-enhanced metalorganic chemical vapor deposition in a N2–H2–Ar gas mixture , 2012 .

[19]  Jeff Wolfenstine,et al.  The Role of Al and Li Concentration on the Formation of Cubic Garnet Solid Electrolyte of Nominal Composition Li7La3Zr2O12 , 2012 .

[20]  S. Kondo,et al.  Lithium ion conduction in LiTi2(PO4)3 , 2001 .

[21]  F. Rosciano,et al.  Grain Boundaries in a Lithium Aluminum Titanium Phosphate-Type Fast Lithium Ion Conducting Glass Ceramic: Microstructure and Nonlinear Ion Transport Properties , 2012 .

[22]  Khang Hoang,et al.  Origin of the structural phase transition in Li7La3Zr2O12. , 2012, Physical review letters.

[23]  Alexander Kuhn,et al.  Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12". , 2011, Physical chemistry chemical physics : PCCP.

[24]  N. Imanishi,et al.  Synthesis of garnet-type Li7 − xLa3Zr2O12 − 1/2x and its stability in aqueous solutions , 2011 .

[25]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[26]  D. Chehimi,et al.  Lithium Mobility in Li1.2Ti1.8R0.2(PO4)3 Compounds (R = Al, Ga, Sc, In) as Followed by NMR and Impedance Spectroscopy , 2004 .

[27]  Phl Peter Notten,et al.  Sol–gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure , 2011 .

[28]  Kevin Huang,et al.  Electrical conductivity and stability of A-site deficient (La, Sc) co-doped SrTiO3 mixed ionic-electronic conductor , 2011 .

[29]  J. Sakamoto,et al.  Synthesis and high Li-ion conductivity of Ga-stabilized cubic Li7La3Zr2O12 , 2012 .

[30]  Philippe Knauth,et al.  Inorganic solid Li ion conductors: An overview , 2009 .

[31]  Tetsuro Kobayashi,et al.  High lithium ionic conductivity in the garnet-type oxide Li7−X La3(Zr2−X, NbX)O12 (X = 0–2) , 2011 .

[32]  Manman Guo,et al.  Influence of Li3PO4 addition on properties of lithium ion-conductive electrolyte Li1.3Al0.3Ti1.7(PO4)3 , 2011 .

[33]  G. C. Mather,et al.  A-site-cation deficiency in the SrCe0.9Yb0.1O3−δ perovskite: effects of charge-compensation mechanism on structure and proton conductivity , 2011 .

[34]  Xiujian Zhao,et al.  Effects of annealing temperature on structure and opt-electric properties of ion-conducting LLTO thin films prepared by RF magnetron sputtering , 2011 .

[35]  J. Sakamoto,et al.  High conductivity of dense tetragonal Li7La3Zr2O12 , 2012 .

[36]  A. Orliukas,et al.  Determination of the non-Arrhenius behaviour of the bulk conductivity of fast ionic conductors LLTO at high temperature , 2011 .

[37]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[38]  R. Smoluchowski,et al.  Elements of X‐Ray Diffraction , 1957 .

[39]  T. Shiga,et al.  A lithium phosphorous oxynitride (LiPON) film sputtered from unsintered Li3PO4 powder target , 2011 .

[40]  J. Akedo,et al.  Preparation of Lithium Aluminum Titanium Phosphate Electrolytes Thick Films by Aerosol Deposition Method , 2011 .

[41]  J. Bates Thin-Film Lithium and Lithium-Ion Batteries , 2000 .

[42]  Nerea Mascaraque,et al.  An interpretation for the increase of ionic conductivity by nitrogen incorporation in LiPON oxynitride glasses , 2013 .

[43]  Wenzhi Li,et al.  A review of application of carbon nanotubes for lithium ion battery anode material , 2012 .

[44]  G. M. Rao,et al.  Sputter deposited LiPON thin films from powder target as electrolyte for thin film battery applications , 2011 .

[45]  Yang Shen,et al.  Improving ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12 sol into the precursor powder , 2013 .

[46]  B. Cullity,et al.  Elements of X-ray diffraction , 1957 .

[47]  Xiujian Zhao,et al.  Crystallization Kinetics of Superionic Conductive Al(B, La)‐ Incorporated LiTi2(PO4)3 Glass‐Ceramics , 2013 .

[48]  J. Vaughey,et al.  Solution-Based Synthesis and Characterization of Lithium-Ion Conducting Phosphate Ceramics for Lithium Metal Batteries , 2012 .

[49]  Xianming Wu,et al.  Influence of the annealing technique on the properties of Li ion-conductive Li1.3Al0.3Ti1.7(PO4)3 films , 2013, Ionics.

[50]  J. Sakamoto,et al.  Electron microscopy characterization of hot-pressed Al substituted Li7La3Zr2O12 , 2012, Journal of Materials Science.

[51]  Kyu-Nam Jung,et al.  Influence of B2O3 addition on the ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 glass ceramics , 2013 .

[52]  R. Jiménez,et al.  On the influence of the vacancy distribution on the structure and ionic conductivity of A-site-deficient Li(x)Sr(x)La(2/3-x)TiO3 perovskites. , 2012, Inorganic chemistry.

[53]  Z. Wen,et al.  Electrochemical properties of Li1.4Al0.4Ti1.6(PO4)3 synthesized by a co-precipitation method , 2011 .

[54]  Jürgen Janek,et al.  Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors “Li7La3Zr2O12” and Li7−xLa3Zr2−xTaxO12 with garnet-type structure , 2012 .

[55]  T. Yoshida,et al.  Electrochemical properties of Li7La3Zr2O12 solid electrolyte prepared in argon atmosphere , 2012 .

[56]  Xianming Wu,et al.  Preparation and characterization of LiMn2O4/Li1.3Al0.3Ti1.7(PO4)3/LiMn2O4 thin-film battery by spray technique , 2011 .

[57]  Norihito Kijima,et al.  Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure , 2009 .

[58]  P. Taberna,et al.  Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry , 2013 .

[59]  J. Janek,et al.  Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium , 2013 .

[60]  H. Wadley,et al.  The influence of the nitrogen-ion flux on structure and ionic conductivity of vapor deposited lithiu , 2011 .

[61]  J. Narayan,et al.  Melting phenomena and pulsed‐laser annealing in semiconductors , 1981 .

[62]  V. Thangadurai,et al.  Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12 , 2007 .

[63]  M. Kotobuki,et al.  Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol–gel route using various Al sources , 2013 .

[64]  P. Heitjans,et al.  Mechanosynthesis of Solid Electrolytes: Preparation, Characterization, and Li Ion Transport Properties of Garnet-Type Al-Doped Li7La3Zr2O12 Crystallizing with Cubic Symmetry , 2012 .

[65]  O. Bohnké,et al.  Lithium-7 NMR and ionic conductivity studies of lanthanum lithium titanate electrolytes , 1997 .

[66]  T. Yoshida,et al.  Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte , 2011 .