Distance in Graphs

The distance between two vertices is the basis of the definition of several graph parameters including diameter, radius, average distance and metric dimension. These invariants are examined, especially how they relate to one another and to other graph invariants and their behaviour in certain graph classes. We also discuss characterizations of graph classes described in terms of distance or shortest paths. Finally, generalizations are considered.

[1]  Marina Moscarini,et al.  Distance-Hereditary Graphs, Steiner Trees, and Connected Domination , 1988, SIAM J. Comput..

[2]  Christine Swart,et al.  Distance measures in graphs and subgraphs. , 1996 .

[3]  Frank Harary,et al.  Distance in graphs , 1990 .

[4]  C. Lekkeikerker,et al.  Representation of a finite graph by a set of intervals on the real line , 1962 .

[5]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[6]  Bohdan Zelinka,et al.  Medians and peripherians of trees , 1968 .

[7]  Ján Plesník,et al.  On the sum of all distances in a graph or digraph , 1984, J. Graph Theory.

[8]  F. Harary THE MAXIMUM CONNECTIVITY OF A GRAPH. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[9]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[10]  Gary Chartrand,et al.  Steiner distance in graphs , 1989 .

[11]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[12]  Ortrud R. Oellermann,et al.  Minimum average distance of strong orientations of graphs , 2004, Discret. Appl. Math..

[13]  Feodor F. Dragan,et al.  Convexity and HHD-Free Graphs , 1999, SIAM J. Discret. Math..

[14]  G. Dirac On rigid circuit graphs , 1961 .

[15]  Gary Chartrand,et al.  Resolvability in graphs and the metric dimension of a graph , 2000, Discret. Appl. Math..

[16]  Ingo Althöfer Average distances in undirected graphs and the removal of vertices , 1990, J. Comb. Theory, Ser. B.

[17]  Frank Harary,et al.  The Dissimilarity Characteristic of Husimi Trees , 1953 .

[18]  Ortrud R. Oellermann,et al.  Steiner centers in graphs , 1990, J. Graph Theory.

[19]  P. J. Slater Centrality of paths and vertices in a graph: cores and pits , 1980 .

[20]  Ľubomír Šoltés,et al.  Transmission in graphs: A bound and vertex removing , 1991 .

[21]  Paul Erdgs,et al.  ON TWO PROBLEMS OF INFORMATION THEORY bY PAUL ERDGS and ALFRJ~D RgNYI , 2001 .

[22]  Fred Buckley,et al.  A note on graphs with diameter-preserving spanning trees , 1988, J. Graph Theory.

[23]  L. Lovász Combinatorial problems and exercises , 1979 .

[24]  H. S. Shapiro,et al.  A Combinatory Detection Problem , 1963 .

[25]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[26]  Odile Favaron,et al.  Edge-vulnerability and mean distance , 1989, Networks.

[27]  Peter Winkler,et al.  Mean distance and minimum degree , 1997, J. Graph Theory.

[28]  H. Robbins A Theorem on Graphs, with an Application to a Problem of Traffic Control , 1939 .

[29]  T. A. A. Broadbent,et al.  The Geometry of Environment. An Introduction to Spatial Organization in Design , 1972, The Mathematical Gazette.

[30]  C. Jordan Sur les assemblages de lignes. , 1869 .

[31]  Douglas R. Shier,et al.  On powers and centers of chordal graphs , 1983, Discret. Appl. Math..

[32]  M. S. Krishnamoorthy,et al.  Bridge Obstructions to Circular-Three Gate Matrix Layout , 1998, Graphs Comb..

[33]  Azriel Rosenfeld,et al.  Landmarks in Graphs , 1996, Discret. Appl. Math..

[34]  Peter L. Hammer,et al.  Completely separable graphs , 1990, Discret. Appl. Math..

[35]  H. Landau On dominance relations and the structure of animal societies: III The condition for a score structure , 1953 .

[36]  Siemion Fajtlowicz,et al.  On conjectures of Graffiti , 1988, Discret. Math..

[37]  Fan Chung Graham,et al.  The average distance and the independence number , 1988, Journal of Graph Theory.

[38]  Stéphane Pérennes,et al.  Lower Bounds on the Broadcasting and Gossiping Time of Restricted Protocols , 2004, SIAM J. Discret. Math..

[39]  J. K. Doyle,et al.  Mean distance in a graph , 1977, Discret. Math..

[40]  Ortrud R. Oellermann,et al.  on the Steiner Median of a Tree , 1996, Discret. Appl. Math..

[41]  Jan Karel Lenstra,et al.  The complexity of the network design problem , 1978, Networks.

[42]  Ortrud R. Oellermann,et al.  From steiner centers to steiner medians , 1995, J. Graph Theory.

[43]  Anthony Bonato,et al.  A Survey of Models of the Web Graph , 2004, CAAN.

[44]  Zoltán Füredi,et al.  Minimal Oriented Graphs of Diameter 2 , 1998, Graphs Comb..

[45]  Zevi Miller,et al.  On graphs containing a given graph as center , 1981, J. Graph Theory.

[46]  Hans-Jürgen Bandelt,et al.  Distance-hereditary graphs , 1986, J. Comb. Theory, Ser. B.

[47]  S. M. Hedetniemi,et al.  Linear Algorithms for Finding the Jordan Center and Path Center of a Tree , 1981 .

[48]  Robert A. Beezer,et al.  Using minimum degree to bound average distance , 2001, Discret. Math..

[49]  Carsten Thomassen,et al.  Distances in orientations of graphs , 1975, J. Comb. Theory, Ser. B.

[50]  Lars Døvling Andersen,et al.  Graph theory in memory of G.A. Dirac , 1989 .

[51]  E. Howorka A CHARACTERIZATION OF DISTANCE-HEREDITARY GRAPHS , 1977 .

[52]  Ervin Györi,et al.  Average distance in graphs with removed elements , 1988, J. Graph Theory.

[53]  H. M. Mulder The interval function of a graph , 1980 .

[54]  Pawel Winter,et al.  Steiner problem in networks: A survey , 1987, Networks.

[55]  David R. Wood,et al.  On the Metric Dimension of Cartesian Products of Graphs , 2005, SIAM J. Discret. Math..

[56]  Ortrud R. Oellermann,et al.  Steiner Trees and Convex Geometries , 2009, SIAM J. Discret. Math..

[57]  Ortrud R. Oellermann,et al.  On 3-Steiner simplicial orderings , 2009, Discret. Math..

[58]  András Sebö,et al.  On Metric Generators of Graphs , 2004, Math. Oper. Res..

[59]  Henry Martyn Mulder N-cubes and Median Graphs , 1980, J. Graph Theory.

[60]  Bojan Mohar,et al.  Eigenvalues, diameter, and mean distance in graphs , 1991, Graphs Comb..

[61]  Peter J. Slater,et al.  Centers to centroids in graphs , 1978, J. Graph Theory.

[62]  H. G. Landau,et al.  On dominance relations and the structure of animal societies: II. Some effects of possible social factors , 1951 .

[63]  Wayne Goddard,et al.  On the graphs with maximum distance or $k$-diameter , 2005 .

[64]  M. Farber,et al.  Convexity in graphs and hypergraphs , 1986 .

[65]  Ortrud R. Oellermann,et al.  The average Steiner distance of a graph , 1996, J. Graph Theory.

[66]  Juan A. Rodríguez-Velázáuez,et al.  Bounding the diameter and the mean distance of a graph from its eigenvalues: Laplacian versus adjacency matrix methods , 1999, Discret. Math..

[67]  Xiaodong Zhang On the two conjectures of Graffiti , 2004 .

[68]  Russell Merris,et al.  An edge version of the matrix-tree theorem and the wiener index , 1989 .

[69]  Richard T. Wong,et al.  Worst-Case Analysis of Network Design Problem Heuristics , 1980, SIAM J. Algebraic Discret. Methods.