A Short Survey of Recent Advances in Graph Matching

Graph matching, which refers to a class of computational problems of finding an optimal correspondence between the vertices of graphs to minimize (maximize) their node and edge disagreements (affinities), is a fundamental problem in computer science and relates to many areas such as combinatorics, pattern recognition, multimedia and computer vision. Compared with the exact graph (sub)isomorphism often considered in a theoretical setting, inexact weighted graph matching receives more attentions due to its flexibility and practical utility. A short review of the recent research activity concerning (inexact) weighted graph matching is presented, detailing the methodologies, formulations, and algorithms. It highlights the methods under several key bullets, e.g. how many graphs are involved, how the affinity is modeled, how the problem order is explored, and how the matching procedure is conducted etc. Moreover, the research activity at the forefront of graph matching applications especially in computer vision, multimedia and machine learning is reported. The aim is to provide a systematic and compact framework regarding the recent development and the current state-of-the-arts in graph matching.

[1]  Roberto Marcondes Cesar Junior,et al.  Inexact graph matching for model-based recognition: Evaluation and comparison of optimization algorithms , 2005, Pattern Recognit..

[2]  Hong Qiao,et al.  MAP Inference with MRF by Graduated Non-Convexity and Concavity Procedure , 2014, ICONIP.

[3]  Horst Bunke,et al.  A Quadratic Programming Approach to the Graph Edit Distance Problem , 2007, GbRPR.

[4]  Marcello Pelillo,et al.  Graph-based quadratic optimization: A fast evolutionary approach , 2011, Comput. Vis. Image Underst..

[5]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[6]  M. Kraetzl,et al.  Detection of abnormal change in dynamic networks , 1999, 1999 Information, Decision and Control. Data and Information Fusion Symposium, Signal Processing and Communications Symposium and Decision and Control Symposium. Proceedings (Cat. No.99EX251).

[7]  Fei-Fei Li,et al.  Action Recognition with Exemplar Based 2.5D Graph Matching , 2012, ECCV.

[8]  Francesc Serratosa,et al.  Graduated Assignment Algorithm for Multiple Graph Matching Based on a Common Labeling , 2013, Int. J. Pattern Recognit. Artif. Intell..

[9]  Leonidas J. Guibas,et al.  Graph Matching with Anchor Nodes: A Learning Approach , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Horst Bunke,et al.  Error Correcting Graph Matching: On the Influence of the Underlying Cost Function , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Francis R. Bach,et al.  A Path Following Algorithm for Graph Matching , 2008, ICISP.

[12]  Adrien Bartoli,et al.  An Analysis of Errors in Graph-Based Keypoint Matching and Proposed Solutions , 2014, ECCV.

[13]  Minsu Cho,et al.  Progressive graph matching: Making a move of graphs via probabilistic voting , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Abraham Kandel,et al.  Classification Of Web Documents Using Graph Matching , 2004, Int. J. Pattern Recognit. Artif. Intell..

[15]  Yosi Keller,et al.  A Probabilistic Approach to Spectral Graph Matching , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Weizhi Nie,et al.  Clique-graph matching by preserving global & local structure , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Changsheng Li,et al.  Human Age Estimation Based on Locality and Ordinal Information , 2015, IEEE Transactions on Cybernetics.

[18]  Hong Qiao,et al.  GNCGCP - Graduated NonConvexity and Graduated Concavity Procedure , 2013, ArXiv.

[19]  Panos M. Pardalos,et al.  Quadratic Assignment Problem , 1997, Encyclopedia of Optimization.

[20]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[21]  Anand Rangarajan,et al.  Graph matching by graduated assignment , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[23]  Wei Liu,et al.  Graduated Consistency-Regularized Optimization for Multi-graph Matching , 2014, ECCV.

[24]  Mario Vento,et al.  Graph Matching and Learning in Pattern Recognition in the Last 10 Years , 2014, Int. J. Pattern Recognit. Artif. Intell..

[25]  Lei Wang,et al.  Density Maximization for Improving Graph Matching With Its Applications , 2015, IEEE Transactions on Image Processing.

[26]  King-Sun Fu,et al.  A distance measure between attributed relational graphs for pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[27]  Fernando De la Torre,et al.  Factorized Graph Matching , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Jianxin Wu,et al.  Finding Coherent Motions and Semantic Regions in Crowd Scenes: A Diffusion and Clustering Approach , 2014, ECCV.

[29]  Y. Bar-Shalom,et al.  A generalized S-D assignment algorithm for multisensor-multitarget state estimation , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[30]  Shengrui Wang,et al.  A New Algorithm for Graph Matching with Application to Content-Based Image Retrieval , 2002, SSPR/SPR.

[31]  Mario Vento,et al.  Graph Matching Techniques for Computer Vision , 2013 .

[32]  Anand Rangarajan,et al.  A new point matching algorithm for non-rigid registration , 2003, Comput. Vis. Image Underst..

[33]  Liang Lin,et al.  Integrating Graph Partitioning and Matching for Trajectory Analysis in Video Surveillance , 2012, IEEE Transactions on Image Processing.

[34]  Hong Yan,et al.  Local Topology Preserved Tensor Models for Graph Matching , 2015, 2015 IEEE International Conference on Systems, Man, and Cybernetics.

[35]  Y. Aflalo,et al.  On convex relaxation of graph isomorphism , 2015, Proceedings of the National Academy of Sciences.

[36]  Minsu Cho,et al.  A Graph Matching Algorithm Using Data-Driven Markov Chain Monte Carlo Sampling , 2010, 2010 20th International Conference on Pattern Recognition.

[37]  Marco Gori,et al.  Exact and approximate graph matching using random walks , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Alan L. Yuille,et al.  Convergence Properties of the Softassign Quadratic Assignment Algorithm , 1999, Neural Computation.

[39]  Jitendra Malik,et al.  Category-specific object reconstruction from a single image , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  G. Levi A note on the derivation of maximal common subgraphs of two directed or undirected graphs , 1973 .

[41]  Mario Vento,et al.  A long trip in the charming world of graphs for Pattern Recognition , 2015, Pattern Recognit..

[42]  Remco M. Dijkman,et al.  Graph Matching Algorithms for Business Process Model Similarity Search , 2009, BPM.

[43]  Steven C. H. Hoi,et al.  Graph Matching by Simplified Convex-Concave Relaxation Procedure , 2014, International Journal of Computer Vision.

[44]  Edwin R. Hancock,et al.  Multiple graph matching with Bayesian inference , 1997, Pattern Recognit. Lett..

[45]  Francesc Serratosa,et al.  Smooth Simultaneous Structural Graph Matching and Point-Set Registration , 2011, GbRPR.

[46]  Christoph Schnörr,et al.  Probabilistic Subgraph Matching Based on Convex Relaxation , 2005, EMMCVPR.

[47]  Jean Ponce,et al.  A Tensor-Based Algorithm for High-Order Graph Matching , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Jenny Benois-Pineau,et al.  Retrieval of objects in video by similarity based on graph matching , 2007, Pattern Recognit. Lett..

[49]  Ralph R. Martin,et al.  Rapidly finding CAD features using database optimization , 2015, Comput. Aided Des..

[50]  Vladimir Kolmogorov,et al.  Feature Correspondence Via Graph Matching: Models and Global Optimization , 2008, ECCV.

[51]  Yosi Keller,et al.  Efficient High Order Matching , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Mayank Bansal,et al.  Geometric Polynomial Constraints in Higher-Order Graph Matching , 2014, ArXiv.

[53]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[54]  Guillermo Sapiro,et al.  Graph Matching: Relax at Your Own Risk , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Francis Bach,et al.  Global alignment of protein–protein interaction networks by graph matching methods , 2009, Bioinform..

[56]  M Dorigo,et al.  Ant colonies for the quadratic assignment problem , 1999, J. Oper. Res. Soc..

[57]  M. Bernardine Dias,et al.  The Dynamic Hungarian Algorithm for the Assignment Problem with Changing Costs , 2007 .

[58]  Francesc Serratosa,et al.  Learning graph-matching edit-costs based on the optimality of the oracle's node correspondences , 2015, Pattern Recognit. Lett..

[59]  Mario Vento,et al.  Thirty Years Of Graph Matching In Pattern Recognition , 2004, Int. J. Pattern Recognit. Artif. Intell..

[60]  Yu Tian,et al.  Joint Optimization for Consistent Multiple Graph Matching , 2013, 2013 IEEE International Conference on Computer Vision.

[61]  M. Zaslavskiy,et al.  A Path Following Algorithm for the Graph Matching Problem , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Jignesh M. Patel,et al.  SAGA: a subgraph matching tool for biological graphs , 2007, Bioinform..

[63]  Rakesh Nagi,et al.  Data mining in an engineering design environment: OR applications from graph matching , 2006, Comput. Oper. Res..

[64]  Francesc Serratosa,et al.  Speeding up Fast Bipartite Graph Matching Through a New Cost Matrix , 2015, Int. J. Pattern Recognit. Artif. Intell..

[65]  ZhuHaibin,et al.  Solving the Many to Many assignment problem by improving the Kuhn-Munkres algorithm with backtracking , 2016 .

[66]  Yanning Zhang,et al.  Tensor Power Iteration for Multi-graph Matching , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[67]  Lorenzo Livi,et al.  The graph matching problem , 2012, Pattern Analysis and Applications.

[68]  Zhiliang Ma,et al.  Manifold Matching: Joint Optimization of Fidelity and Commensurability , 2011, 1112.5510.

[69]  Minsu Cho,et al.  Graph Matching via Sequential Monte Carlo , 2012, ECCV.

[70]  Mario Vento,et al.  A large database of graphs and its use for benchmarking graph isomorphism algorithms , 2003, Pattern Recognit. Lett..

[71]  Subramanian Ramanathan,et al.  A Multi-Task Learning Framework for Head Pose Estimation under Target Motion , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[72]  Horst Bunke,et al.  Self-organizing maps for learning the edit costs in graph matching , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[73]  Cristian Sminchisescu,et al.  Semi-supervised learning and optimization for hypergraph matching , 2011, 2011 International Conference on Computer Vision.

[74]  Xuelong Li,et al.  A survey of graph edit distance , 2010, Pattern Analysis and Applications.

[75]  V. S. Subrahmanian,et al.  DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases , 2009, SEMWEB.

[76]  Fernando De la Torre,et al.  Deformable Graph Matching , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[77]  Francis R. Bach,et al.  Many-to-Many Graph Matching: a Continuous Relaxation Approach , 2010, ECML/PKDD.

[78]  Tianshu Yu,et al.  Scene parsing using graph matching on street-view data , 2016, Comput. Vis. Image Underst..

[79]  Lu Tian,et al.  Progressive feature matching via triplet graph , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[80]  Jun Wang,et al.  Multi-View Point Registration via Alternating Optimization , 2015, AAAI.

[81]  Ju Jia Zou,et al.  Inexact graph matching using a hierarchy of matching processes , 2015, Computational Visual Media.

[82]  Shih-Fu Chang,et al.  Detecting image near-duplicate by stochastic attributed relational graph matching with learning , 2004, MULTIMEDIA '04.

[83]  Benjamin B. Kimia,et al.  Measuring 3D shape similarity by graph-based matching of the medial scaffolds , 2011, Comput. Vis. Image Underst..

[84]  Francesc Serratosa,et al.  Models and algorithms for computing the common labelling of a set of attributed graphs , 2011, Comput. Vis. Image Underst..

[85]  Leonidas J. Guibas,et al.  An optimization approach for extracting and encoding consistent maps in a shape collection , 2012, ACM Trans. Graph..

[86]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[87]  Liujuan Cao,et al.  Single/cross-camera multiple-person tracking by graph matching , 2014, Neurocomputing.

[88]  Joshua T. Vogelstein,et al.  Seeded Graph Matching Via Joint Optimization of Fidelity and Commensurability. , 2014, 1401.3813.

[89]  Ralph R. Martin,et al.  BiggerPicture: data-driven image extrapolation using graph matching , 2014, ACM Trans. Graph..

[90]  Kaspar Riesen,et al.  Approximate graph edit distance computation by means of bipartite graph matching , 2009, Image Vis. Comput..

[91]  Chien-Chung Shen,et al.  A Graph Matching Approach to Optimal Task Assignment in Distributed Computing Systems Using a Minimax Criterion , 1985, IEEE Trans. Computers.

[92]  Martial Hebert,et al.  Fast and Scalable Approximate Spectral Matching for Higher Order Graph Matching , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[93]  Francesc Serratosa,et al.  Graph Matching using SIFT Descriptors - An Application to Pose Recovery of a Mobile Robot , 2010, VISAPP.

[94]  Bonnie Berger,et al.  IsoRankN: spectral methods for global alignment of multiple protein networks , 2009, Bioinform..

[95]  Hongyuan Zha,et al.  A Matrix Decomposition Perspective to Multiple Graph Matching , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[96]  Adnan Anwar,et al.  Anomaly detection in electric network database of smart grid: Graph matching approach , 2016 .

[97]  Alberto Del Bimbo,et al.  Efficient Matching and Indexing of Graph Models in Content-Based Retrieval , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[98]  Changsheng Li,et al.  Learning ordinal discriminative features for age estimation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[99]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[100]  Yong Yu,et al.  Conceptual Graph Matching for Semantic Search , 2002, ICCS.

[101]  H. Bunke Graph Matching : Theoretical Foundations , Algorithms , and Applications , 2022 .

[102]  Abdel Nasser,et al.  A Survey of the Quadratic Assignment Problem , 2014 .

[103]  Sylvie Philipp-Foliguet,et al.  Inexact graph matching based on kernels for object retrieval in image databases , 2011, Image Vis. Comput..

[104]  Edwin R. Hancock,et al.  A Bayesian compatibility model for graph matching , 1996, Pattern Recognit. Lett..

[105]  Xiaowei Zhou,et al.  Multi-image Matching via Fast Alternating Minimization , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[106]  Martial Hebert,et al.  An Integer Projected Fixed Point Method for Graph Matching and MAP Inference , 2009, NIPS.

[107]  Matthias Hein,et al.  A flexible tensor block coordinate ascent scheme for hypergraph matching , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[108]  Vikas Singh,et al.  Solving the multi-way matching problem by permutation synchronization , 2013, NIPS.

[109]  Francesc Serratosa,et al.  Attributed Graph Matching for Image-Features Association Using SIFT Descriptors , 2010, SSPR/SPR.

[110]  Lawrence B. Holder,et al.  Mining Graph Data: Cook/Mining Graph Data , 2006 .

[111]  Yi Wang,et al.  Motion retrieval using weighted graph matching , 2015, Soft Comput..

[112]  Shinji Umeyama,et al.  An Eigendecomposition Approach to Weighted Graph Matching Problems , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[113]  Wei Liu,et al.  Discrete hyper-graph matching , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[114]  Cordelia Schmid,et al.  Unsupervised object discovery and localization in the wild: Part-based matching with bottom-up region proposals , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[115]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[116]  Hongyuan Zha,et al.  Multi-Graph Matching via Affinity Optimization with Graduated Consistency Regularization , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[117]  Salih O. Duffuaa,et al.  A Linear Programming Approach for the Weighted Graph Matching Problem , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[118]  Sing-Hoi Sze,et al.  Path Matching and Graph Matching in Biological Networks , 2007, J. Comput. Biol..

[119]  Andrea Torsello,et al.  Matching as a non-cooperative game , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[120]  Minsu Cho,et al.  Reweighted Random Walks for Graph Matching , 2010, ECCV.

[121]  Aubrey B. Poore,et al.  Multidimensional assignment formulation of data association problems arising from multitarget and multisensor tracking , 1994, Comput. Optim. Appl..

[122]  Jianxin Wu,et al.  Person Re-Identification with Correspondence Structure Learning , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[123]  King-Sun Fu,et al.  An Image Understanding System Using Attributed Symbolic Representation and Inexact Graph-Matching , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[124]  Martial Hebert,et al.  Fast and scalable approximate spectral graph matching for correspondence problems , 2013, Inf. Sci..

[125]  Hung-Khoon Tan,et al.  Near-Duplicate Keyframe Identification With Interest Point Matching and Pattern Learning , 2007, IEEE Transactions on Multimedia.

[126]  Hong Qiao,et al.  An Extended Path Following Algorithm for Graph-Matching Problem , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[127]  Erhard Rahm,et al.  Similarity flooding: a versatile graph matching algorithm and its application to schema matching , 2002, Proceedings 18th International Conference on Data Engineering.

[128]  Minsu Cho,et al.  Hyper-graph matching via reweighted random walks , 2011, CVPR 2011.

[129]  Martial Hebert,et al.  A spectral technique for correspondence problems using pairwise constraints , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[130]  Alexander J. Smola,et al.  Learning Graph Matching , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[131]  Dinggang Shen,et al.  HAMMER: hierarchical attribute matching mechanism for elastic registration , 2002, IEEE Transactions on Medical Imaging.

[132]  Mikio Takagi,et al.  Similarity retrieval of NOAA satellite imagery by graph matching , 1993, Electronic Imaging.

[133]  M. Fatih Demirci,et al.  The Representation and Matching of Images Using Top Points , 2009, Journal of Mathematical Imaging and Vision.

[134]  James A. Hendler,et al.  The Case for Graph-Structured Representations , 1997, ICCBR.

[135]  Jean Ponce,et al.  Learning Graphs to Match , 2013, 2013 IEEE International Conference on Computer Vision.

[136]  Le Song,et al.  Learning Triggering Kernels for Multi-dimensional Hawkes Processes , 2013, ICML.

[137]  Amnon Shashua,et al.  Probabilistic graph and hypergraph matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[138]  Benoit Gaüzère,et al.  A Quadratic Assignment Formulation of the Graph Edit Distance , 2015, ArXiv.

[139]  Jean Ponce,et al.  Finding Matches in a Haystack: A Max-Pooling Strategy for Graph Matching in the Presence of Outliers , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[140]  Martial Hebert,et al.  Unsupervised Learning for Graph Matching , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[141]  David Eppstein,et al.  The Polyhedral Approach to the Maximum Planar Subgraph Problem: New Chances for Related Problems , 1994, GD.

[142]  Ram D. Sriram,et al.  Content-based assembly search: A step towards assembly reuse , 2008, Comput. Aided Des..

[143]  Philip H. S. Torr,et al.  Solving Markov Random Fields using Semi Definite Programming , 2003, AISTATS.

[144]  Steven Gold,et al.  A Graduated Assignment Algorithm for Graph Matching , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[145]  Guillermo Sapiro,et al.  Robust Multimodal Graph Matching: Sparse Coding Meets Graph Matching , 2013, NIPS.

[146]  Francesc Serratosa,et al.  Correspondence consensus of two sets of correspondences through optimisation functions , 2015, Pattern Analysis and Applications.

[147]  Hong Qiao,et al.  GNCCP—Graduated NonConvexityand Concavity Procedure , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[148]  Yu Tian,et al.  On the Convergence of Graph Matching: Graduated Assignment Revisited , 2012, ECCV.

[149]  Jun Wang,et al.  Consistency-Driven Alternating Optimization for Multigraph Matching: A Unified Approach , 2015, IEEE Transactions on Image Processing.

[150]  Haibin Zhu,et al.  Solving the Many to Many assignment problem by improving the Kuhn-Munkres algorithm with backtracking , 2016, Theor. Comput. Sci..

[151]  Philip S. Yu,et al.  Multiple Anonymized Social Networks Alignment , 2015, 2015 IEEE International Conference on Data Mining.

[152]  Mario Vento,et al.  How and Why Pattern Recognition and Computer Vision Applications Use Graphs , 2007, Applied Graph Theory in Computer Vision and Pattern Recognition.

[153]  Ali Shokoufandeh,et al.  Many-to-many feature matching in object recognition: a review of three approaches , 2012 .

[154]  Franz Rendl,et al.  QAPLIB – A Quadratic Assignment Problem Library , 1997, J. Glob. Optim..

[155]  Kamil Adamczewski,et al.  Discrete Tabu Search for Graph Matching , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[156]  Horst Bunke,et al.  Automatic learning of cost functions for graph edit distance , 2007, Inf. Sci..

[157]  Jianbo Shi,et al.  Balanced Graph Matching , 2006, NIPS.

[158]  A. John MINING GRAPH DATA , 2022 .

[159]  Horst Bunke Error-Tolerant Graph Matching: A Formal Framework and Algorithms , 1998, SSPR/SPR.

[160]  P. Foggia,et al.  Fast graph matching for detecting CAD image components , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[161]  Jean Ponce,et al.  A graph-matching kernel for object categorization , 2011, 2011 International Conference on Computer Vision.

[162]  Eugene M. Luks,et al.  Isomorphism of graphs of bounded valence can be tested in polynomial time , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[163]  Francesc Serratosa,et al.  Fast computation of Bipartite graph matching , 2014, Pattern Recognit. Lett..