Nonlinear vibration behavior of graphene resonators and their applications in sensitive mass detection

[1]  Chang-wan Kim,et al.  Erratum: “Nanomechanical mass detection using nonlinear oscillations” [Appl. Phys. Lett. 95, 203104 (2009)] , 2012 .

[2]  Harold S. Park,et al.  Intrinsic energy dissipation in CVD-grown graphene nanoresonators. , 2012, Nanoscale.

[3]  Andre K. Geim,et al.  Nobel Lecture: Random walk to graphene* , 2011 .

[4]  H. V. D. Zant,et al.  Mechanical systems in the quantum regime , 2011, 1106.2060.

[5]  J. Chaste,et al.  Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. , 2011, Nature nanotechnology.

[6]  Harold S. Park,et al.  Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics pri , 2011, 1105.1785.

[7]  Sungsoo Na,et al.  Mechanical Characterization of Amyloid Fibrils Using Coarse‐Grained Normal Mode Analysis , 2011, 1105.1788.

[8]  Robert A. Barton,et al.  High, size-dependent quality factor in an array of graphene mechanical resonators. , 2011, Nano letters.

[9]  Robert A. Barton,et al.  Large-scale arrays of single-layer graphene resonators. , 2010, Nano letters.

[10]  Harold S. Park,et al.  On the utility of vacancies and tensile strain-induced quality factor enhancement for mass sensing using graphene monolayers , 2010, Nanotechnology.

[11]  R. Naghdabadi,et al.  Nonlinear vibrational analysis of single-layer graphene sheets , 2010, Nanotechnology.

[12]  Chang-Wan Kim,et al.  Nanomechanical mass detection using nonlinear oscillations , 2009 .

[13]  J. Kysar,et al.  Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description , 2009 .

[14]  A. Isacsson,et al.  Nanomechanical mass measurement using nonlinear response of a graphene membrane , 2009, 0911.0953.

[15]  P. Kim,et al.  Performance of monolayer graphene nanomechanical resonators with electrical readout. , 2009, Nature nanotechnology.

[16]  Baowen Li,et al.  Young's modulus of Graphene: a molecular dynamics study , 2009, 0906.5237.

[17]  Luciano Colombo,et al.  Nonlinear elasticity of monolayer graphene. , 2009, Physical review letters.

[18]  G. Scuseria,et al.  Electromechanical properties of suspended graphene nanoribbons. , 2009, Nano letters.

[19]  Harold S. Park,et al.  Multilayer friction and attachment effects on energy dissipation in graphene nanoresonators , 2009 .

[20]  V. Shenoy,et al.  Edge elastic properties of defect-free single-layer graphene sheets , 2009 .

[21]  Harold S. Park,et al.  The importance of edge effects on the intrinsic loss mechanisms of graphene nanoresonators. , 2009, Nano letters.

[22]  V. Shenoy,et al.  Edge-stress-induced warping of graphene sheets and nanoribbons. , 2008, Physical review letters.

[23]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[24]  Sungsoo Na,et al.  Mesoscopic model for mechanical characterization of biological protein materials , 2008, J. Comput. Chem..

[25]  A. Isacsson,et al.  Continuum elastic modeling of graphene resonators. , 2008, Nano letters.

[26]  J. Ericksen,et al.  On the Cauchy—Born Rule , 2008 .

[27]  A. M. van der Zande,et al.  Imaging mechanical vibrations in suspended graphene sheets. , 2008, Nano letters.

[28]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[29]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[30]  Scott S. Verbridge,et al.  Electromechanical Resonators from Graphene Sheets , 2007, Science.

[31]  G. W. Young,et al.  Continuum and atomistic modeling of interacting graphene layers , 2007 .

[32]  E Weinan,et al.  Generalized Cauchy-Born rules for elastic deformation of sheets, plates, and rods: Derivation of continuum models from atomistic models , 2006 .

[33]  K. M. Liew,et al.  Continuum model for the vibration of multilayered graphene sheets , 2005 .

[34]  Ted Belytschko,et al.  Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule , 2004 .

[35]  K. Bathe Finite Element Procedures , 1995 .

[36]  Moss,et al.  Spectral density of fluctuations of a double-well Duffing oscillator driven by white noise. , 1988, Physical review. A, General physics.

[37]  O. C. Zienkiewicz,et al.  The Finite Element Method: Basic Formulation and Linear Problems , 1987 .

[38]  DiVincenzo Dp Dispersive corrections to continuum elastic theory in cubic crystals. , 1986 .

[39]  M. Dykman,et al.  Spectral distribution of a nonlinear oscillator performing Brownian motion in a double-well potential , 1985 .

[40]  S. BRODETSKY,et al.  Theory of Plates and Shells , 1941, Nature.

[41]  W. Cai,et al.  Mathematics and Mechanics of Solids , 2012 .

[42]  J. van den Brink Graphene: from strength to strength. , 2007, Nature nanotechnology.

[43]  Stephen M. Heinrich,et al.  Variational methods in mechanics , 1992 .

[44]  DiVincenzo,et al.  Dispersive corrections to continuum elastic theory in cubic crystals. , 1986, Physical review. B, Condensed matter.

[45]  Roland Glowinski,et al.  An introduction to the mathematical theory of finite elements , 1976 .