Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers.

We propose a periodic multilayer structure of dielectric and metal interlayers to achieve a near-perfect broadband absorber of mid-infrared radiation. We examine the influence of four factors on its performance: (1) the interlayer metal conductance, (2) the number of dielectric layers, (3) a nanopatterned antireflective layer, and (4) a reflective metallic bottom layer for backreflection. Absorption characteristics greater than 99% of the 300 K and 500 K blackbody spectra are found for the optimized structures. Incident angle and polarization dependence of the absorption spectra are examined. We also investigate the possibility of fabricating a nanopatterned antireflective layer to maximize absorption.

[1]  C. Goupil,et al.  Fabrication and properties of four-leg oxide thermoelectric modules , 2005 .

[2]  W. A. G. Voss,et al.  Generalized approach to multiphase dielectric mixture theory , 1973 .

[3]  Terry M. Tritt,et al.  Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View , 2006 .

[4]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[5]  Jack Ng,et al.  Metamaterial frequency-selective superabsorber. , 2009, Optics letters.

[6]  Zongfu Yu,et al.  Dielectric nanostructures for broadband light trapping in organic solar cells , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[7]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[8]  George S. Nolas,et al.  Recent Developments in Bulk Thermoelectric Materials , 2006 .

[9]  Willie J Padilla,et al.  A metamaterial absorber for the terahertz regime: design, fabrication and characterization. , 2008, Optics express.

[10]  I. Thomas,et al.  Method for the preparation of porous silica antireflection coatings varying in refractive index from 1.22 to 1.44. , 1992, Applied optics.

[11]  Costas M. Soukoulis,et al.  Wide-angle perfect absorber/thermal emitter in the terahertz regime , 2008, 0807.2479.

[12]  M. Bouaïcha,et al.  Bruggeman effective medium approach for modelling optical properties of porous silicon: comparison with experiment , 2007 .

[13]  Z. Fan,et al.  Extended effective medium model for refractive indices of thin films with oblique columnar structure , 2005 .

[14]  Laurent Pilon,et al.  Optical properties of porous silicon. Part III: Comparison of experimental and theoretical results , 2006, Optical Materials.

[15]  Willie J Padilla,et al.  Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging , 2008, 0807.3390.

[16]  D. J. Pedder,et al.  Thin‐film infrared absorber structures for advanced thermal detectors , 1988 .

[17]  Laurent Pilon,et al.  Effective optical properties of non-absorbing nanoporous thin films , 2006, Thin Solid Films.

[18]  Lidong Chen,et al.  Thermoelectrics: Direct Solar Thermal Energy Conversion , 2008 .

[19]  Chi H. Lee,et al.  Analysis of multiple reflection effects in reflective measurements of electro-optic coefficients of poled polymers in multilayer structures. , 2006, Optics express.

[20]  Hanspeter Helm,et al.  Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy , 2006 .

[21]  J T Cox,et al.  Infrared absorber for ferroelectric detectors. , 1994, Applied optics.

[22]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[23]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[24]  P. Baumeister,et al.  Antireflection coatings with Chebyshev or Butterworth response: design. , 1986, Applied optics.

[25]  Jeremy J. Baumberg,et al.  Omnidirectional absorption in nanostructured metal surfaces , 2008 .

[26]  T. Shimizu,et al.  Fabrication of an all-oxide thermoelectric power generator , 2001 .

[27]  Willie J Padilla,et al.  Highly-flexible wide angle of incidence terahertz metamaterial absorber , 2008, 0808.2416.

[28]  G. Shvets,et al.  Wide-angle infrared absorber based on a negative-index plasmonic metamaterial , 2008, 0807.1312.

[29]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[30]  J. Monzón,et al.  Optical performance of absorber structures for thermal detectors. , 1994, Applied optics.

[31]  Optimized broadband wide-angle absorber structures. , 2008, Applied optics.

[33]  P. Quémerais,et al.  Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light. , 2007, Physical review letters.

[34]  Satoshi Yasuda,et al.  A black body absorber from vertically aligned single-walled carbon nanotubes , 2009, Proceedings of the National Academy of Sciences.

[35]  Vasyl G. Kravets,et al.  Plasmonic blackbody : Almost complete absorption of light in nanostructured metallic coatings , 2008 .