Single-copy entanglement detection

One of the main challenges of quantum information is the reliable verification of quantum entanglement. The conventional detection schemes require repeated measurement on a large number of identically prepared systems. This is hard to achieve in practice when dealing with large-scale entangled quantum systems. In this letter we formulate verification as a decision procedure, i.e., entanglement is seen as the ability of quantum system to answer certain “yes-no questions”. We show that for a variety of large quantum states even a single copy suffices to detect entanglement with a high probability by using local measurements. For example, a single copy of a 16-qubit k-producible state or one copy of 24-qubit linear cluster state suffices to verify entanglement with more than 95% confidence. Our method is applicable to many important classes of states, such as cluster states or ground states of local Hamiltonians in general.Quantum correlations: resource-efficient entanglement detectionA single copy of a quantum system and local measurements are sufficient for high-probability entanglement detection. Conventional entanglement detection schemes require multiple copies of a given quantum state, which can be impractical or simply impossible—particularly for large states. Aleksandra Dimić (University of Belgrade) and Borivoje Dakić (Austrian Academy of Sciences & University of Vienna) have conceived a method for entanglement detection that requires only single copies of multi-partite quantum states. This is based on the success probability of a suitably designed experimental run, which is exponentially suppressed in the system size for separable states, but remains close to certainty for specific entangled ones. Hence, success or failure identifies the state as entangled or separable with high probability. This approach promises reliable entanglement detection at reduced resources need, making it useful for future applications based on large entangled states.

[1]  Jian-Wei Pan,et al.  Experimental Ten-Photon Entanglement. , 2016, Physical review letters.

[2]  Frank Verstraete,et al.  Peps as unique ground states of local hamiltonians , 2007, Quantum Inf. Comput..

[3]  G. Tóth,et al.  Entanglement detection in the stabilizer formalism , 2005, quant-ph/0501020.

[4]  S. E. Ahnert,et al.  General implementation of all possible positive-operator-value measurements of single-photon polarization states , 2005 .

[5]  Hans J. Briegel,et al.  Multipartite entanglement in spin chains , 2005, quant-ph/0502160.

[6]  Minh C. Tran,et al.  Quantum entanglement from random measurements , 2014, 1411.4755.

[7]  Zizhu Wang,et al.  Entanglement and Nonlocality in Infinite 1D Systems. , 2016, Physical review letters.

[8]  Otfried Gühne,et al.  Increasing the statistical significance of entanglement detection in experiments. , 2009, Physical review letters.

[9]  David A. Huse,et al.  Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms , 2014, Nature.

[10]  G. Tóth,et al.  Multipartite entanglement and high precision metrology , 2010, 1006.4368.

[11]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[12]  Matthias Weidemüller,et al.  Direct observation of ultrafast many-body electron dynamics in an ultracold Rydberg gas , 2015, Nature Communications.

[13]  Yi-Kai Liu,et al.  Direct fidelity estimation from few Pauli measurements. , 2011, Physical review letters.

[14]  Jonathan P Dowling,et al.  Quantum technology: the second quantum revolution , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[16]  Marek Zukowski,et al.  Experimentally friendly geometrical criteria for entanglement. , 2007, Physical review letters.

[17]  Umesh V. Vazirani,et al.  A classical leash for a quantum system: command of quantum systems via rigidity of CHSH games , 2012, ITCS '13.

[18]  Lior Eldar,et al.  Local Hamiltonians Whose Ground States Are Hard to Approximate , 2015, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[19]  Mark R. Dowling,et al.  Energy as an entanglement witness for quantum many-body systems (15 pages) , 2004, quant-ph/0408086.

[20]  Yaoyun Shi,et al.  Optimal robust quantum self-testing by binary nonlocal XOR games , 2012, 1207.1819.

[21]  R. Cleve,et al.  Nonlocality and communication complexity , 2009, 0907.3584.

[22]  G. Chiribella,et al.  Optimal Quantum Tomography , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  Gniewomir Sarbicki,et al.  Entanglement witnesses: construction, analysis and classification , 2014, 1402.2413.

[24]  Harald Weinfurter,et al.  Multipartite Entanglement Detection with Minimal Effort. , 2014, Physical review letters.

[25]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[26]  Matthew McKague,et al.  Self-Testing Graph States , 2010, TQC.

[27]  J. Eisert,et al.  Reliable quantum certification of photonic state preparations , 2014, Nature Communications.

[28]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[29]  Matthias Christandl,et al.  Reliable quantum state tomography. , 2011, Physical review letters.

[30]  M. Żukowski,et al.  Entanglement criteria for noise resistance of two-qudit states , 2016 .

[31]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[32]  Augusto Smerzi,et al.  Fisher information and multiparticle entanglement , 2010, 1006.4366.

[33]  Yves Tillé,et al.  Sampling Algorithms , 2011, International Encyclopedia of Statistical Science.

[34]  Jean-Daniel Bancal,et al.  Physical characterization of quantum devices from nonlocal correlations , 2013, 1307.7053.

[35]  M. Senthilvelan,et al.  Identifying non-k-separability of a class of N-qubit complete graph states using correlation tensors , 2016, 1605.07929.

[36]  H. Briegel,et al.  Graph states as ground states of many-body spin-1/2 Hamiltonians , 2006, quant-ph/0612186.

[37]  Minh C. Tran,et al.  Correlations between outcomes of random measurements , 2016, 1605.08529.

[38]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[39]  Vlatko Vedral,et al.  Macroscopic Thermodynamical Witnesses of Quantum Entanglement , 2004 .

[40]  L. Sonderhouse,et al.  A Fermi-degenerate three-dimensional optical lattice clock , 2017, Science.

[41]  Damian Markham,et al.  Practical Sharing of Quantum Secrets over Untrusted Channels , 2014, ICITS.

[42]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[43]  J. Eisert,et al.  Direct certification of a class of quantum simulations , 2016, 1602.00703.

[44]  Geza Toth Entanglement witnesses in spin models , 2005 .

[45]  J. M. Donohue,et al.  Reliable entanglement verification , 2013, 1302.1182.

[46]  L. Pezzè,et al.  Entanglement, nonlinear dynamics, and the heisenberg limit. , 2007, Physical review letters.

[47]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[48]  M. S. Tame,et al.  Experimental verification of multipartite entanglement in quantum networks , 2016, Nature Communications.

[49]  Michael J. Biercuk,et al.  Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins , 2012, Nature.

[50]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[51]  Jun Ye,et al.  Observation of dipolar spin-exchange interactions with lattice-confined polar molecules , 2013, Nature.

[52]  O. Gühne,et al.  Nonlinear entanglement witnesses, covariance matrices and the geometry of separable states , 2007 .

[53]  T. H. Yang,et al.  Robust self-testing of the singlet , 2012, 1203.2976.

[54]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[55]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[56]  Juan Miguel Arrazola,et al.  Accessible nonlinear entanglement witnesses , 2012 .

[57]  Barbara M. Terhal Detecting quantum entanglement , 2002, Theor. Comput. Sci..

[58]  Robin Blume-Kohout,et al.  Entanglement verification with finite data. , 2010, Physical review letters.

[59]  L. Pezzè,et al.  Witnessing entanglement without entanglement witness operators , 2015, Proceedings of the National Academy of Sciences.

[60]  D. Bruß,et al.  Detecting entanglement of unknown quantum states with random measurements , 2015, 1504.08225.

[61]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[62]  Davide Castelvecchi,et al.  Quantum computers ready to leap out of the lab in 2017 , 2017, Nature.

[63]  E. Kashefi,et al.  Unconditionally verifiable blind quantum computation , 2012, 1203.5217.

[64]  Iordanis Kerenidis,et al.  Multipartite entanglement verification resistant against dishonest parties. , 2011, Physical review letters.

[65]  Peter Wittek,et al.  Efficient Device-Independent Entanglement Detection for Multipartite Systems , 2016, 1612.08551.