Thermodynamic modeling and sensitivity analysis of ejector in refrigeration system

Abstract This paper focuses on the problems of thermodynamic modeling and sensitivity analysis of the ejector in refrigeration. Firstly, a new thermodynamic model is proposed based on the assumptions of constant pressure mixing and constant area mixing. The proposed model contains fewer parameters and simpler structure compared with the traditional ejector models. Later, the sensitivity analysis of the ejector is carried out based on the adjoint sensitivity method. Three different sensitivity coefficients are given to reveal the relation between design parameters and ejector performance. The result shows that geometric parameters have the most influences on the entrainment ratio of the ejector. For the ejector using R600a, the sensitivity coefficients of entrainment ratio to A t and A m are - 2.43 % and 2.40 % respectively.

[1]  Neal Lawrence,et al.  Review of recent developments in advanced ejector technology , 2016 .

[2]  Adriano Milazzo,et al.  Future perspectives in ejector refrigeration , 2017 .

[3]  Fabio Inzoli,et al.  Computational fluid-dynamics modeling of supersonic ejectors: Screening of turbulence modeling approaches , 2017 .

[4]  D. Cacuci Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis approach , 1981 .

[5]  Jianyong Chen,et al.  Investigation of ejectors in refrigeration system: Optimum performance evaluation and ejector area ratios perspectives , 2014 .

[6]  Chaobin Dang,et al.  Investigations on driving flow expansion characteristics inside ejectors , 2017 .

[7]  Zhen Li,et al.  A control oriental model for combined compression-ejector refrigeration system , 2017 .

[8]  Ioan Sarbu,et al.  Review of solar refrigeration and cooling systems , 2013 .

[9]  Jae-Myung Lee,et al.  Ejector performance prediction at critical and subcritical operational modes , 2017 .

[10]  R. Errico What is an adjoint model , 1997 .

[11]  Evangelos Bellos,et al.  Optimum design of a solar ejector refrigeration system for various operating scenarios , 2017 .

[12]  Mikhail Sorin,et al.  On the design and corresponding performance of steam jet ejectors , 2016 .

[13]  Lei Wang,et al.  Design and numerical investigation of an adaptive nozzle exit position ejector in multi-effect distillation desalination system , 2017 .

[14]  Fabio Inzoli,et al.  Ejector refrigeration: A comprehensive review , 2016 .

[15]  Youyi Wang,et al.  Optimization of a hybrid ejector air conditioning system with PSOGA , 2017 .

[16]  R. Yapıcı,et al.  Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio , 2008 .

[17]  Xiangyu Wang,et al.  Sparsity-enhanced optimization for ejector performance prediction , 2016 .

[18]  Bin-Juine Huang,et al.  Performance test of solar-assisted ejector cooling system , 2014 .

[19]  Anthony Paul Roskilly,et al.  Thermodynamic modelling and parameter determination of ejector for ejection refrigeration systems , 2017 .

[20]  Pei-Xue Jiang,et al.  Experimental and analytical studies on the shock wave length in convergent and convergent–divergent nozzle ejectors , 2014 .

[21]  Junjie Yan,et al.  Theoretical analysis of ejector refrigeration system performance under overall modes , 2017 .

[22]  E. Wacholder,et al.  Application of the Adjoint Sensitivity Method to the Analysis of a Supersonic Ejector , 1984 .

[23]  Bogdan Diaconu,et al.  Influence of geometrical factors on steam ejector performance – A numerical assessment , 2009 .

[24]  Ruzhu Wang,et al.  Progress of mathematical modeling on ejectors , 2009 .

[25]  Sergio Colle,et al.  A general model for evaluation of vapor ejectors performance for application in refrigeration , 2012 .

[26]  Rafet Yapici,et al.  Experimental study on ejector refrigeration system powered by low grade heat , 2007 .

[27]  Armando C. Oliveira,et al.  CFD study of a variable area ratio ejector using R600a and R152a refrigerants , 2013 .

[28]  Pan Xinxiang,et al.  Experimental investigation on low-temperature thermal energy driven steam ejector refrigeration system for cooling application , 2017 .

[29]  J. García del Valle,et al.  An experimental investigation of a R-134a ejector refrigeration system , 2014 .

[30]  T. Sriveerakul,et al.  Performance prediction of steam ejector using computational fluid dynamics: Part 1. Validation of the CFD results , 2007 .

[31]  Bin-Juine Huang,et al.  Investigation of an experimental ejector refrigeration machine operating with refrigerant R245fa at design and off-design working conditions. Part 2. Theoretical and experimental results , 2015 .

[32]  Mikhail Sorin,et al.  Effects of design conditions and irreversibilities on the dimensions of ejectors in refrigeration systems , 2016 .

[33]  Giovanni Ferrara,et al.  Suitability of coupling a solar powered ejection cycle with a vapour compression refrigerating machine , 2012 .

[34]  Bogdan Diaconu,et al.  Numerical assessment of steam ejector efficiencies using CFD , 2009 .

[35]  Jeong Ik Lee,et al.  Application of adjoint sensitivity analysis method to supercritical CO2 power cycle optimization , 2018 .

[36]  Bin-Juine Huang,et al.  A 1-D analysis of ejector performance , 1999 .

[37]  Supachart Chungpaibulpatana,et al.  Experimental investigation of an ejector refrigerator: Effect of mixing chamber geometry on system performance , 2001 .