Exploring the String Axiverse with Precision Black Hole Physics

It has recently been suggested that the presence of a plenitude of light axions, an Axiverse, is evidence for the extra dimensions of string theory. We discuss the observational consequences of these axions on astrophysical black holes through the Penrose superradiance process. When an axion Compton wavelength is comparable to the size of a black hole, the axion binds to the black hole ``nucleus'' forming a gravitational atom in the sky. The occupation number of superradiant atomic levels, fed by the energy and angular momentum of the black hole, grows exponentially. The black hole spins down and an axion Bose-Einstein condensate cloud forms around it. When the attractive axion self-interactions become stronger than the gravitational binding energy, the axion cloud collapses, a phenomenon known in condensed matter physics as ``bosenova''. The existence of axions is first diagnosed by gaps in the mass vs spin plot of astrophysical black holes. For young black holes the allowed values of spin are quantized, giving rise to ``Regge trajectories'' inside the gap region. The axion cloud can also be observed directly either through precision mapping of the near-horizon geometry or through gravitational waves coming from the bosenova explosion, as well as axion transitions and annihilations in the gravitational atom. Our estimates suggest that these signals are detectable in upcoming experiments, such as Advanced LIGO, AGIS, and LISA. Current black hole spin measurements imply an upper bound on the QCD axion decay constant of $2\ifmmode\times\else\texttimes\fi{}{10}^{17}\text{ }\text{ }\mathrm{GeV}$, while Advanced LIGO can detect signals from a QCD axion cloud with a decay constant as low as the GUT scale. We finally discuss the possibility of observing the $\ensuremath{\gamma}$-rays associated with the bosenova explosion and, perhaps, the radio waves from axion-to-photon conversion for the QCD axion.

[1]  Marta Volonteri,et al.  Formation of supermassive black holes , 2010, 1003.4404.

[2]  J. G. Rosa The extremal black hole bomb , 2009, 0912.1780.

[3]  Measuring the Spins of Stellar Black Holes: A Progress Report , 2009, 0911.5408.

[4]  S. Dimopoulos,et al.  String Photini at the LHC , 2009, 0909.5440.

[5]  Lorenzo Ubaldi Effects of theta on the deuteron binding energy and the triple-alpha process , 2008, 0811.1599.

[6]  Ben Freivogel Anthropic explanation of the dark matter abundance , 2008, 0810.0703.

[7]  U. Cambridge,et al.  MEASURING THE SPIN OF GRS 1915+105 WITH RELATIVISTIC DISK REFLECTION , 2009, 0909.5383.

[8]  N. Kaloper,et al.  String Axiverse , 2009, 0905.4720.

[9]  University of Leicester,et al.  Spin and Relativistic Phenomena Around Black Holes , 2009 .

[10]  J. McClintock,et al.  Measuring the Spins of Stellar-Mass Black Holes , 2009, 0902.3488.

[11]  J. Orosz,et al.  A DETERMINATION OF THE SPIN OF THE BLACK HOLE PRIMARY IN LMC X-1 , 2009, 0901.0920.

[12]  Savas Dimopoulos,et al.  Gravitational wave detection with atom interferometry , 2007, 0712.1250.

[13]  A. Freise,et al.  Pushing towards the ET sensitivity using 'conventional' technology , 2008, 0810.0604.

[14]  M. Kasevich,et al.  An Atomic Gravitational Wave Interferometric Sensor (AGIS) , 2008 .

[15]  Richard H. Price,et al.  Black Holes , 1997 .

[16]  M. Zaldarriaga,et al.  Bumpy black holes from spontaneous Lorentz violation , 2007, 0706.0288.

[17]  S. Dolan Instability of the massive Klein-Gordon field on the Kerr spacetime , 2007, 0705.2880.

[18]  J. Gair,et al.  'Kludge' gravitational waveforms for a test-body orbiting a Kerr black hole , 2007 .

[19]  S. Hughes Sort of) Testing relativity with extreme mass ratio inspirals , 2006, gr-qc/0608140.

[20]  R. Bousso Holographic probabilities in eternal inflation. , 2006, Physical review letters.

[21]  E. Witten,et al.  Axions In String Theory , 2006, hep-th/0605206.

[22]  E. Berti,et al.  Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions , 2005, gr-qc/0511111.

[23]  R. Narayan Black holes in astrophysics , 2005, gr-qc/0506078.

[24]  S. Shapiro Spin, Accretion, and the Cosmological Growth of Supermassive Black Holes , 2004, astro-ph/0411156.

[25]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Contents , 2008 .

[26]  S. Teukolsky,et al.  Black Holes , 1998, gr-qc/9808035.

[27]  P. Seymour Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects , 1984 .

[28]  D. Raine General relativity , 1980, Nature.

[29]  R. Wagoner,et al.  Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity , 1973 .

[30]  R. Beyer,et al.  Soviet Physics—JETP , 1960 .

[31]  小幡 行雄,et al.  Soviet Physics JETP , 1956 .