Biomimicry and Fuzzy Modeling: A Match Made in Heaven

Biomimicry, the design of artificial systems that mimic natural behavior, is recently attracting considerable interest. Biomimicry requires a. reverse engineering process; the behavior of a biological agent is analyzed in order to mimic this behavior in an artificial system. In many cases, biologists have already studied the relevant behavior and provided a detailed verbal description of it. Mimicking the natural behavior can then be reduced to the following problem: how can we convert the given verbal description into a "well-defined mathematical formula or algorithm that can be implemented by an artificial system? Fuzzy modeling (FM), "with its ability to handle and manipulate verbal information, constitutes a natural approach for addressing this problem. The application of FM in this context may lead to a systematic approach for biomimcry, namely, given a verbal description of an animal's behavior (e.g., the foraging behavior of ants), apply FM to obtain a mathematical model of this behavior "which can be implemented by artificial systems (e.g., autonomous robots). The purpose of this position paper is to highlight these issues and to alert the attention of the computational intelligence community to this emerging application of FM.

[1]  N. Pierce Origin of Species , 1914, Nature.

[2]  C. Patlak,et al.  A mathematical contribution to the study of orientation of organisms , 1953 .

[3]  Michael Margaliot,et al.  Mathematical modeling of observed natural behavior: a fuzzy logic approach , 2004, Fuzzy Sets Syst..

[4]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[5]  C. Patlak Random walk with persistence and external bias , 1953 .

[6]  Yoseph Bar-Cohen,et al.  Biologically inspired intelligent robots , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[7]  Claus Mattheck,et al.  Design in Nature: Learning from Trees , 1998 .

[8]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[9]  Moshe Sipper Machine Nature: The Coming Age of Bio-Inspired Computing , 2002 .

[10]  Abraham Kandel,et al.  Fuzzy Expert Systems , 1991 .

[11]  Serge Guillaume,et al.  Designing fuzzy inference systems from data: An interpretability-oriented review , 2001, IEEE Trans. Fuzzy Syst..

[12]  J. Goodenough,et al.  Perspectives on animal behavior , 1993 .

[13]  G. Fraenkel,et al.  The Orientation of Animals, Kineses, Taxes and Compass Reactions, , 1941 .

[14]  William Rowan,et al.  The Study of Instinct , 1953 .

[15]  Michael Margaliot,et al.  New Approaches to Fuzzy Modeling and Control - Design and Analysis , 2000, Series in Machine Perception and Artificial Intelligence.

[16]  José Aguilar,et al.  Adaptive Random Fuzzy Cognitive Maps , 2002, IBERAMIA.

[17]  Michael Margaliot,et al.  Nicholson's blowflies revisited: a fuzzy modeling approach , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[18]  Uzay Kaymak,et al.  Fuzzy Decision Making in Modeling and Control , 2002, World Scientific Series in Robotics and Intelligent Systems.

[19]  Konrad Z. Lorenz,et al.  King Solomon's ring: new light on animal ways / Konrad Z. Lorenz , 1952 .

[20]  Irina Perfilieva,et al.  Logical foundations of rule-based systems , 2006, Fuzzy Sets Syst..

[21]  J. Buckley,et al.  Fuzzy expert systems and fuzzy reasoning , 2004 .

[22]  Arjan van der Schaft,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[23]  Miha Mraz,et al.  Simulating flocks on the wing: the fuzzy approach. , 2005, Journal of Theoretical Biology.

[24]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[25]  Philip Ullyott,et al.  The Behaviour of Dendrocoelum lacteum , 1936 .

[26]  Bart Kosko,et al.  Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence , 1991 .

[27]  John Yen,et al.  Industrial Applications of Fuzzy Logic and Intelligent Systems , 1995 .

[28]  Vilém Novák,et al.  Are fuzzy sets a reasonable tool for modeling vague phenomena? , 2005, Fuzzy Sets Syst..

[29]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[30]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[31]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[32]  James J. Buckley,et al.  Fuzzy Expert Systems and Fuzzy Reasoning: Siler/Fuzzy Expert Systems , 2004 .

[33]  Ignacio Requena,et al.  Are artificial neural networks black boxes? , 1997, IEEE Trans. Neural Networks.

[34]  G. Fraenkel Orientation of Animals , 1940 .

[35]  Ronald R. Yager,et al.  Essentials of fuzzy modeling and control , 1994 .

[36]  E. Wilson,et al.  Sociobiology: The New Synthesis , 1975 .

[37]  Mark J. Randall Adaptive neural control of walking robots , 2001 .

[38]  Leah Edelstein-Keshet,et al.  Mathematical models in biology , 2005, Classics in applied mathematics.

[39]  Fred Wenstøp,et al.  Quantitative analysis with linguistic values , 1980 .

[40]  Michael Margaliot,et al.  Fuzzy Lyapunov-based approach to the design of fuzzy controllers , 1999, Fuzzy Sets Syst..

[41]  Michio Sugeno,et al.  Introduction: The Real Contribution of Fuzzy Systems , 1998 .

[42]  Jonathan Timmis,et al.  Application Areas of AIS: The Past, The Present and The Future , 2005, ICARIS.

[43]  Randall D. Beer,et al.  Biologically inspired approaches to robotics: what can we learn from insects? , 1997, CACM.

[44]  Witold Pedrycz,et al.  Fuzzy sets engineering , 1995 .

[45]  Kevin M. Passino,et al.  Biomimicry for Optimization, Control and Automation , 2004, IEEE Transactions on Automatic Control.

[46]  Chris Cornelis,et al.  Fuzzy Ant Based Clustering , 2004, ANTS Workshop.

[47]  A. Gray,et al.  I. THE ORIGIN OF SPECIES BY MEANS OF NATURAL SELECTION , 1963 .

[48]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[49]  V. Novák,et al.  Mathematical Principles of Fuzzy Logic , 1999 .

[50]  Mauro Birattari,et al.  The local paradigm for modeling and control: from neuro-fuzzy to lazy learning , 2001, Fuzzy Sets Syst..

[51]  George P. Richardson,et al.  Introduction to System Dynamics Modeling with DYNAMO , 1981 .

[52]  R. Matthews,et al.  Ants. , 1898, Science.

[53]  Michio Sugeno,et al.  Applied fuzzy systems , 1994 .

[54]  Michael Margaliot,et al.  How does the Dendrocoleum lacteum orient to light? A fuzzy modeling approach , 2005, Fuzzy Sets Syst..

[55]  Didier Dubois,et al.  Fuzzy information engineering: a guided tour of applications , 1997 .

[56]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[57]  Vilém Novák,et al.  Formal theories and linguistic descriptions , 2004, Fuzzy Sets Syst..

[58]  Fred Wenstøp,et al.  Deductive verbal models of organizations , 1976 .

[59]  Michio Sugeno,et al.  Introduction to Fuzzy Modeling , 1998 .

[60]  Stephanie Forrest,et al.  Infect Recognize Destroy , 1996 .

[61]  Ebrahim Mamdani,et al.  Applications of fuzzy algorithms for control of a simple dynamic plant , 1974 .

[62]  Lotfi A. Zadeh,et al.  Fuzzy logic = computing with words , 1996, IEEE Trans. Fuzzy Syst..

[63]  A. John Mallinckrodt,et al.  Qualitative reasoning: Modeling and simulation with incomplete knowledge , 1994, at - Automatisierungstechnik.

[64]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[65]  M. Margaliot,et al.  The Fuzzy Ant , 2006, 2006 IEEE International Conference on Fuzzy Systems.