On the Magnetar Origin of the GRBs Presenting X-Ray Afterglow Plateaus

The X-ray afterglow plateau emission observed in many gamma-ray bursts (GRBs) has been interpreted as being fueled either by fallback onto a newly formed black hole or by the spin-down luminosity of an ultra-magnetized millisecond neutron star. If the latter model is assumed, GRB X-ray afterglow light curves can be reproduced analytically. We fit a sample of GRB X-ray plateaus, interestingly yielding a distribution in the diagram of magnetic field versus spin period (B–P) consistent with B ∝ P7/6, which is consistent with GRB expectations of the well-established physics of the spin-up line for accreting Galactic X-ray pulsars. The normalization of the relation that we obtain perfectly matches spin-up line predictions for typical neutron star masses (∼1 M⊙) and radii (∼10 km), and for mass accretion rates typically expected in GRBs, . Short GRBs with extended emission (SEEs) appear toward the long-period end of the distribution, and long GRBs (LGRBs) toward the short-period end. This result is consistent with expectations from the spin-up limit, where the total accreted mass determines the position of the neutron star in the B–P diagram. The B–P distributions for LGRBs and SEEs are statistically different, further supporting the idea that the fundamental plane relation—a tri-dimensional correlation between the X-ray luminosity at the end of the plateau, the end time of the plateau, and the 1 s peak luminosity in the prompt emission—is a powerful discriminant among those populations. Our conclusions are robust against suppositions regarding the collimation angle of the GRB and the magnetar braking index, which shift the resulting properties of the magnetar parallel to the spin-up line, and strongly support a magnetar origin for GRBs presenting X-ray plateaus.

[1]  C. Palomba,et al.  Neutron star bulk viscosity, ‘spin-flip’ and GW emission of newly born magnetars , 2018, Monthly Notices of the Royal Astronomical Society.

[2]  L. Amati,et al.  Gamma-ray Burst Prompt Correlations: Selection and Instrumental Effects , 2017, 1704.00844.

[3]  M. Tarnopolski,et al.  Gamma-Ray Burst Prompt Correlations , 2016, 1612.00618.

[4]  Z. Dai,et al.  Constraining the Type of Central Engine of GRBs with Swift Data , 2017, 1712.09390.

[5]  L. S. Collaboration,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017 .

[6]  David Blair,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[7]  P. B. Covas,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[8]  P. Lasky,et al.  The Braking Index of Millisecond Magnetars , 2017, 1705.10005.

[9]  M. Aloy,et al.  Protomagnetar and black hole formation in high-mass stars , 2017, 1703.09893.

[10]  M. Dainotti,et al.  Gamma Ray Burst afterglow and prompt-afterglow relations: an overview , 2017, 1703.06876.

[11]  E. Pian,et al.  A study of gamma ray bursts with afterglow plateau phases associated with supernovae , 2016, 1612.02917.

[12]  R. Willingale,et al.  A Study of the Gamma-Ray Burst Fundamental Plane , 2016, 1610.09082.

[13]  Maria Giovanna Dainotti,et al.  A FUNDAMENTAL PLANE FOR LONG GAMMA-RAY BURSTS WITH X-RAY PLATEAUS , 2016, 1604.06840.

[14]  M. Ostrowski,et al.  STUDY OF GRB LIGHT-CURVE DECAY INDICES IN THE AFTERGLOW PHASE , 2016, 1603.04183.

[15]  J. Lattimer Neutron Star Physics and EOS , 2016 .

[16]  R. Perna,et al.  CONSTRAINING THE GRB-MAGNETAR MODEL BY MEANS OF THE GALACTIC PULSAR POPULATION , 2015, 1510.01430.

[17]  M. Bernardini,et al.  Gamma-ray bursts and magnetars: Observational signatures and predictions , 2015 .

[18]  R. Willingale,et al.  Luminosity–time and luminosity–luminosity correlations for GRB prompt and afterglow plateau emissions , 2015, 1506.00702.

[19]  E. Quataert,et al.  A NARROW SHORT-DURATION GRB JET FROM A WIDE CENTRAL ENGINE , 2015, 1505.05538.

[20]  R. Salvaterra,et al.  Luminosity function and jet structure of Gamma-Ray Burst , 2014, 1409.1213.

[21]  S. Capozziello,et al.  SELECTION EFFECTS IN GAMMA-RAY BURST CORRELATIONS: CONSEQUENCES ON THE RATIO BETWEEN GAMMA-RAY BURST AND STAR FORMATION RATES , 2014, 1412.3969.

[22]  P. O’Brien,et al.  Constraining properties of GRB magnetar central engines using the observed plateau luminosity and duration correlation , 2014, 1407.1053.

[23]  E. Pian,et al.  An upper limit to the energy of gamma-ray bursts indicates that GRBs/SNe are powered by magnetars , 2014, 1406.1209.

[24]  S. Capozziello,et al.  NONPARAMETRIC STUDY OF THE EVOLUTION OF THE COSMOLOGICAL EQUATION OF STATE WITH SNeIa, BAO, AND HIGH-REDSHIFT GRBs , 2014, 1401.2939.

[25]  Bing Zhang,et al.  A TEST OF THE MILLISECOND MAGNETAR CENTRAL ENGINE MODEL OF GAMMA-RAY BURSTS WITH SWIFT DATA , 2014, 1401.1562.

[26]  Anthony L. Piro,et al.  Optical and X-ray emission from stable millisecond magnetars formed from the merger of binary neutron stars , 2013, 1311.1519.

[27]  S. Capozziello,et al.  Slope evolution of GRB correlations and cosmology , 2013, 1308.1918.

[28]  J. Singal,et al.  DETERMINATION OF THE INTRINSIC LUMINOSITY TIME CORRELATION IN THE X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS , 2013, 1307.7297.

[29]  Pan Yuanyue,et al.  Binary Pulsars in Magnetic Field versus Spin Period Diagram , 2013, 1304.2489.

[30]  A. Levan,et al.  Signatures of magnetar central engines in short GRB light curves , 2013, 1301.0629.

[31]  N. Gehrels,et al.  A Universal Scaling for the Energetics of Relativistic Jets from Black Hole Systems , 2012, Science.

[32]  R. Margutti,et al.  The X-ray light curve of gamma-ray bursts: clues to the central engine , 2011, 1112.1058.

[33]  N. Gehrels,et al.  Gamma-Ray Bursts , 2016, Stars and Stellar Processes.

[34]  G. Stratta,et al.  GRB Afterglows with Energy Injection from a spinning down NS , 2012 .

[35]  Joshua S. Bloom,et al.  Gamma-Ray Bursts: The GRB–supernova connection , 2012 .

[36]  J. Cannizzo,et al.  FALL-BACK DISKS IN LONG AND SHORT GAMMA-RAY BURSTS , 2011, 1104.0456.

[37]  R. Willingale,et al.  Towards a standard gamma-ray burst: tight correlations between the prompt and the afterglow plateau phase emission , 2011, 1103.1138.

[38]  S. Capozziello,et al.  STUDY OF POSSIBLE SYSTEMATICS IN THE L*X–T*a CORRELATION OF GAMMA-RAY BURSTS , 2011, 1101.1676.

[39]  R. Willingale,et al.  DISCOVERY OF A TIGHT CORRELATION FOR GAMMA-RAY BURST AFTERGLOWS WITH “CANONICAL” LIGHT CURVES , 2010, 1009.1663.

[40]  J. Hjorth,et al.  The unusual X-ray emission of the short Swift GRB 090515: evidence for the formation of a magnetar? , 2010, 1007.2185.

[41]  S. Capozziello,et al.  Constraining cosmological parameters by gamma-ray burst X-ray afterglow light curves , 2010, 1005.0122.

[42]  G. Stratta,et al.  Gamma-ray bursts afterglows with energy injection from a spinning down neutron star , 2010, 1004.2788.

[43]  N. Gehrels,et al.  THRESHOLD FOR EXTENDED EMISSION IN SHORT GAMMA-RAY BURSTS , 2009, 0910.2456.

[44]  B. Schaefer,et al.  ESTIMATING REDSHIFTS FOR LONG GAMMA-RAY BURSTS , 2009, 0910.4945.

[45]  C. Guidorzi,et al.  Extremely energetic Fermi Gamma-Ray Bursts obey spectral energy correlations , 2009, 0907.0384.

[46]  B. Metzger,et al.  Magnetized relativistic jets and long-duration GRBs from magnetar spin-down during core-collapse supernovae , 2009, 0901.3801.

[47]  J. Cannizzo,et al.  A NEW PARADIGM FOR GAMMA-RAY BURSTS: LONG-TERM ACCRETION RATE MODULATION BY AN EXTERNAL ACCRETION DISK , 2009, 0901.3564.

[48]  S. Capozziello,et al.  An updated Gamma Ray Bursts Hubble diagram , 2009, 0901.3194.

[49]  J. P. Osborne,et al.  Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs , 2008, 0812.3662.

[50]  S. Capozziello,et al.  A time - luminosity correlation for Gamma - Ray Bursts in the X - rays , 2008, 0809.1389.

[51]  C. B. Markwardt,et al.  Global Properties of X-Ray Flashes and X-Ray-Rich Gamma-Ray Bursts Observed by Swift , 2008, 0801.4319.

[52]  Princeton,et al.  Magnetar-driven bubbles and the origin of collimated outflows in gamma-ray bursts , 2007, 0705.1742.

[53]  R. S. Priddey,et al.  A case of mistaken identity? GRB 060912A and the nature of the long–short GRB divide , 2007, 0704.2525.

[54]  A. Tutukov,et al.  Late stages of the evolution of close compact binaries: Type I supernovae, gamma-ray bursts, and supersoft X-ray sources , 2007 .

[55]  T. Sakamoto,et al.  Evidence of Exponential Decay Emission in the Swift Gamma-Ray Bursts , 2007, 0707.2170.

[56]  D. A. Kann,et al.  XRF 040912 : A likely distant X-ray flash , 2006 .

[57]  N. Gehrels,et al.  Testing the Standard Fireball Model of Gamma-Ray Bursts Using Late X-Ray Afterglows Measured by Swift , 2006, astro-ph/0612031.

[58]  L. Kewley,et al.  No supernovae associated with two long-duration γ-ray bursts , 2006, Nature.

[59]  D. Frail,et al.  The gamma-ray burst GRB060614 requires a novel explosive process , 2006, astro-ph/0608257.

[60]  Yizhong Fan,et al.  The X-ray afterglow flat segment in short GRB 051221A: Energy injection from a millisecond magnetar? , 2006, astro-ph/0605445.

[61]  C. Conselice,et al.  Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.

[62]  A. Spitkovsky Time-dependent Force-free Pulsar Magnetospheres: Axisymmetric and Oblique Rotators , 2006, astro-ph/0603147.

[63]  D. Malesani,et al.  Supernova 2005nc and GRB 050525A , 2006 .

[64]  J. Norris,et al.  Short Gamma-Ray Bursts with Extended Emission , 2006, astro-ph/0601190.

[65]  N. Gehrels,et al.  The Early X-Ray Emission from GRBs , 2006, astro-ph/0601125.

[66]  N. Gehrels,et al.  Evidence for a Canonical Gamma-Ray Burst Afterglow Light Curve in the Swift XRT Data , 2005, astro-ph/0508332.

[67]  A. Spitkovsky,et al.  Revised Pulsar Spin-down , 2005, astro-ph/0512002.

[68]  N. Gehrels,et al.  Physical Processes Shaping Gamma-Ray Burst X-Ray Afterglow Light Curves: Theoretical Implications from the Swift X-Ray Telescope Observations , 2005, astro-ph/0508321.

[69]  G. Ghirlanda,et al.  The Collimation-corrected Gamma-Ray Burst Energies Correlate with the Peak Energy of Their νFν Spectrum , 2004, astro-ph/0405602.

[70]  D. Yonetoku,et al.  Gamma-Ray Burst Formation Rate Inferred from the Spectral Peak Energy-Peak Luminosity Relation , 2003, astro-ph/0309217.

[71]  D. Lazzati,et al.  The collimation – corrected GRB energies correlate with the peak energy of their νF ν spectrum , 2004 .

[72]  N. Masetti,et al.  Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts , 2002, astro-ph/0205230.

[73]  Joshua S. Bloom,et al.  The Prompt Energy Release of Gamma-Ray Bursts using a Cosmological k-Correction , 2001, astro-ph/0102371.

[74]  Tsvi Piran,et al.  Predictions for the Very Early Afterglow and the Optical Flash , 1999, astro-ph/9901338.

[75]  T. Piran,et al.  Spectra and Light Curves of Gamma-Ray Burst Afterglows , 1997, astro-ph/9712005.

[76]  L. A. Antonelli,et al.  Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997 , 1997, Nature.

[77]  L. A. Antonelli,et al.  Discovery of the X-Ray Afterglow of the Gamma-Ray Burst of February 28 1997 , 1997, astro-ph/9706065.

[78]  Bradley Efron,et al.  A simple test of independence for truncated data with applications to redshift surveys , 1992 .

[79]  V. Usov,et al.  Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts , 1992 .

[80]  V. V. Uso,et al.  Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts , 1992, Nature.

[81]  D. Bhattacharya,et al.  Formation and evolution of binary and millisecond radio pulsars , 1991 .

[82]  Y. Avni,et al.  Energy spectra of X-ray clusters of galaxies , 1976 .