USP10 Regulates p53 Localization and Stability by Deubiquitinating p53

[1]  Pier Paolo Pandolfi,et al.  The deubiquitinylation and localization of PTEN are regulated by a HAUSP–PML network , 2008, Nature.

[2]  T. Iwakuma,et al.  The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. , 2008, Genes & development.

[3]  Eduardo Sontag,et al.  Transcriptional control of human p53-regulated genes , 2008, Nature Reviews Molecular Cell Biology.

[4]  W. Gu,et al.  The p53–Mdm2–HAUSP complex is involved in p53 stabilization by HAUSP , 2007, Oncogene.

[5]  U. Moll,et al.  The Role of Ubiquitination in the Direct Mitochondrial Death Program of p53 , 2007, Cell cycle.

[6]  Shishan Deng,et al.  Over-expression of genes and proteins of ubiquitin specific peptidases (USPs) and proteasome subunits (PSs) in breast cancer tissue observed by the methods of RFDD-PCR and proteomics , 2007, Breast Cancer Research and Treatment.

[7]  D. Allison,et al.  Increased Expression of Thymidylate Synthetase (TS), Ubiquitin Specific Protease 10 (USP10) and Survivin is Associated with Poor Survival in Glioblastoma Multiforme (GBM) , 2006, Journal of Neuro-Oncology.

[8]  Shili Duan,et al.  Molecular recognition of p53 and MDM2 by USP7/HAUSP , 2006, Nature Structural &Molecular Biology.

[9]  Wei Gu,et al.  p53 ubiquitination: Mdm2 and beyond. , 2006, Molecular cell.

[10]  Yigong Shi,et al.  Structural Basis of Competitive Recognition of p53 and MDM2 by HAUSP/USP7: Implications for the Regulation of the p53–MDM2 Pathway , 2006, PLoS biology.

[11]  H. Ovaa,et al.  Loss of HAUSP-mediated deubiquitination contributes to DNA damage-induced destabilization of Hdmx and Hdm2. , 2005, Molecular cell.

[12]  Petra de Graaf,et al.  Phosphorylation of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[13]  N. Curtin,et al.  Identification and Characterization of a Novel and Specific Inhibitor of the Ataxia-Telangiectasia Mutated Kinase ATM , 2004, Cancer Research.

[14]  G. Wahl,et al.  Accelerated MDM2 auto‐degradation induced by DNA‐damage kinases is required for p53 activation , 2004, The EMBO journal.

[15]  Carlo Rago,et al.  Tumour suppression: Disruption of HAUSP gene stabilizes p53 , 2004, Nature.

[16]  Muyang Li,et al.  A dynamic role of HAUSP in the p53-Mdm2 pathway. , 2004, Molecular cell.

[17]  Muyang Li,et al.  Mono- Versus Polyubiquitination: Differential Control of p53 Fate by Mdm2 , 2003, Science.

[18]  J. Qin,et al.  Parc A Cytoplasmic Anchor for p53 , 2003, Cell.

[19]  J. Qin,et al.  Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization , 2002, Nature.

[20]  U. Moll,et al.  Nuclear degradation of p53 occurs during down‐regulation of the p53 response after DNA damage , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[21]  D. Woods,et al.  C-Terminal Ubiquitination of p53 Contributes to Nuclear Export , 2001, Molecular and Cellular Biology.

[22]  D. Lane,et al.  Cocompartmentalization of p53 and Mdm2 is a major determinant for Mdm2-mediated degradation of p53. , 2001, Experimental cell research.

[23]  T. Roberts,et al.  Induction of p53-Independent Apoptosis by Simian Virus 40 Small t Antigen , 2001, Journal of Virology.

[24]  R. Abraham Cell cycle checkpoint signaling through the ATM and ATR kinases. , 2001, Genes & development.

[25]  Giulio Draetta,et al.  Ras–GAP SH3 domain binding protein (G3BP) is a modulator of USP10, a novel human ubiquitin specific protease , 2001, Oncogene.

[26]  E. Appella,et al.  Post-translational modifications and activation of p53 by genotoxic stresses. , 2001, European journal of biochemistry.

[27]  S. T. Kim,et al.  ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. , 2001, Genes & development.

[28]  J. Levine,et al.  Surfing the p53 network , 2000, Nature.

[29]  C. Maki,et al.  The MDM2 RING-finger domain is required to promote p53 nuclear export , 2000, Nature Cell Biology.

[30]  K. Tsai,et al.  An intact HDM2 RING-finger domain is required for nuclear exclusion of p53 , 2000, Nature Cell Biology.

[31]  S. Elledge,et al.  DNA damage-induced activation of p53 by the checkpoint kinase Chk2. , 2000, Science.

[32]  T. Halazonetis,et al.  Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. , 2000, Genes & development.

[33]  Y Taya,et al.  The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. , 2000, Genes & development.

[34]  C Béroud,et al.  p53 Website and analysis of p53 gene mutations in human cancer: Forging a link between epidemiology and carcinogenesis , 2000, Human mutation.

[35]  Y. Shiloh,et al.  Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[36]  G. Wahl,et al.  A leucine‐rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking , 1999, The EMBO journal.

[37]  A. Levine,et al.  Nuclear Export Is Required for Degradation of Endogenous p53 by MDM2 and Human Papillomavirus E6 , 1998, Molecular and Cellular Biology.

[38]  Hirofumi Tanaka,et al.  Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53 , 1997, FEBS letters.

[39]  Yoichi Taya,et al.  DNA Damage-Induced Phosphorylation of p53 Alleviates Inhibition by MDM2 , 1997, Cell.

[40]  R A Jungmann,et al.  c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M. Oren,et al.  Mdm2 promotes the rapid degradation of p53 , 1997, Nature.

[42]  R. Everett,et al.  A novel ubiquitin‐specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein , 1997, The EMBO journal.

[43]  M. Kubbutat,et al.  Proteolytic cleavage of human p53 by calpain: a potential regulator of protein stability , 1997, Molecular and cellular biology.

[44]  K. Kinzler,et al.  Topological control of p21WAF1/CIP1 expression in normal and neoplastic tissues. , 1995, Cancer research.

[45]  D. Lane,et al.  p53, guardian of the genome , 1992, Nature.

[46]  M. Scheffner,et al.  A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. , 1991, The EMBO journal.

[47]  Y Taya,et al.  Enhanced phosphorylation of p53 by ATM in response to DNA damage. , 1998, Science.

[48]  D. Lane,et al.  Cancer. p53, guardian of the genome. , 1992, Nature.